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1.1  Solution of Algebraic and Transcendental Equations 

1.1.1  Introduction 

A polynomial equation of the form  

    f (x) = pn (x) = a0 x
n–1 + a1 x

n–1 + a2 x
n–2 + … + an–1 x + an = 0  …..(1) 

is called an Algebraic equation. For example, 

    x4 – 4x2 + 5 = 0, 4x2 – 5x + 7 = 0; 2x3 – 5x2 + 7x + 5 = 0 are algebraic equations. 

 An equation which contains polynomials, trigonometric functions, logarithmic functions, 
exponential functions etc., is called a Transcendental equation. For example, 

    tan x – ex = 0;  sin x – xe2x = 0; x ex = cos x 

are transcendental equations. 

 Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in 
science and engineering. We assume that f (x) is continuous in the required interval. A root of 
an equation f (x) = 0 is the value of x, say x =  for which f () = 0. Geometrically, a root of 
an equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the 
x – axis (see Fig. 1) 

 

Fig. 1  Geometrical Interpretation of  a root of f (x) = 0 

 A number  is a simple root of f (x) = 0; if f () = 0 and 0α )(f ' . Then, we can write      

f (x) as,  

     f (x) = (x – ) g(x), g()  0    …..(2) 

 A number  is a multiple root of multiplicity m of f (x) = 0, if f () = f 1() = .... =  f  (m–1) () = 0 
and                 f m () = 0.   

 Then, f (x) can be writhen as, 

     f (x) = (x – )m g (x), g ()   0    …..(3) 
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 A polynomial equation of degree n will have exactly n roots, real or complex, simple or 
multiple. A transcendental equation may have one root or no root or infinite number of roots 
depending on the form of       f (x). 

 The methods of finding the roots of f (x) = 0 are classified as, 

 1. Direct Methods 

 2. Numerical Methods. 

 Direct methods give the exact values of all the roots in a finite number of steps. Numerical 
methods are based on the idea of successive approximations. In these methods, we start with 
one or two initial approximations to the root and obtain a sequence of approximations x0, x1, 
… xk which in the limit as k   converge to the exact root x = a. 

 There are no direct methods for solving higher degree algebraic equations or 
transcendental equations. Such equations can be solved by Numerical methods. In these 
methods, we first find an interval in which the root lies. If a and b are two numbers such that  
f (a) and f (b) have opposite signs, then a root of f (x) = 0 lies in between a and b. We take a or 
b or any valve in between a or b as first approximation x1. This is further improved by 
numerical methods. Here we discuss few important Numerical methods to find a root of                
f (x) = 0. 

1.1.2  Bisection Method 

This is a very simple method. Identify two points x = a and x = b such that f (a) and f (b) are 
having opposite signs. Let f (a) be negative and f (b) be positive. Then there will be a root of   
f (x) = 0 in between a and b. 

 Let the first approximation be the mid point of the interval (a, b). i.e. 

    
 

1 2

a b
x


  

 If f (x1) = 0, then x1 is a root, other wise root lies between a and x1 or x1 and b according as 
f (x1) is positive or negative. Then again we bisect the interval and continue the process until 
the root is found to desired accuracy. Let f (x1) is positive, then root lies in between a and x1 
(see fig.2.). The second approximation to the root is given by, 

    1
2

( )

2

a x
x


  

 If f (x2) is negative, then next approximation is given by 

    2 1
3

( )

2

x x
x


  

 Similarly we can get other approximations. This method is also called Bolzano method. 
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Fig. 2  Bisection Method 

Note:  The interval width is reduced by a factor of one–half at each step and at the end of the 

nth step, the new interval will be [an, bn] of length
–

2n

b a
. The number of iterations n required 

to achieve an accuracy   is given by, 

    

–
log

log 2

 
  

e

e

b a

n      …..(4) 

EXAMPLE 1 

Find a real root of the equation f (x) = x3 – x – 1 = 0, using Bisection method. 

SOLUTION 

First find the interval in which the root lies, by trail and error method. 

   f (1) =13 – 1 – 1 = –1, which is negative 

   f (2) = 23 – 2 – 1 = 5, which is positive 

  A root of f (x) = x3 – x – 1 = 0 lies in between 1 and 2. 

    x1 = 
(1 2) 3

2 2


  = 1.5 

  f (x1) = f (1.5) = (1.5)3 – 1.5 – 1 = 0.875, which is positive. 

  Hence, the root lies in between 1 and 1.5 

    x2 = 
(1 1.5)

2


 = 1.25 

  f (x2) = f (1.25) = (1.25)3 – 1.25 – 1 = – 0.29, which is negative. 

  Hence, the root lies in between 1.25 and 1.5 
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    x3 = 
(1.25 1.5)

2


 = 1.375 

 Similarly, we get x4 = 1.3125, x5 = 1.34375, x6 = 1.328125 etc. 

EXAMPLE 2 

Find a root of f (x) = xex – 1 = 0, using Bisection method, correct to three decimal places. 

SOLUTION 

    f (0) = 0.e0 – 1 = – 1 < 0 

    f (1) = 1.e1 – 1 = 1.7183 > 0 

 Hence a root of f (x) = 0 lies in between 0 and 1. 

    
 

50
2

10
1 .x 


  

    f (0.5) = 0.5 e0.5 – 1 = – 0.1756 

 Hence the root lies in between 0.5 and 1 

    x2 = 
(0.5 1)

2


 = 0.75 

 Proceeding like this, we get the sequence of approximations as follows. 

   x3 = 0.625 
   x4 = 0.5625 
   x5 = 0.59375 
   x6 = 0.5781 
   x7 = 0.5703 
   x8 = 0.5664 
   x9 = 0.5684 
   x10 = 0.5674 
   x11 = 0.5669 
   x12 = 0.5672, 
   x13 = 0.5671, 

 Hence, the required root correct to three decimal places is, x = 0.567. 

1.1.3  Method of False Position 

This is another method to find the roots of f (x) = 0. This method is also known as Regular 
False Method. 

 In this method, we choose two points a and b such that f (a) and f (b) are of opposite signs. 
Hence a root lies in between these points. The equation of the chord joining the two points,  
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(a, f (a)) and (b, f (b)) is given by 

    
– ( ) ( ) – ( )

– –

y f a f b f a

x a b a
     …..(5) 

 We replace the part of the curve between the points [a, f (a)] and [b, f (b)] by means of the 
chord joining these points and we take the point of intersection of the chord with the x axis as 
an approximation to the root (see Fig.3). The point of intersection is obtained by putting y = 0 
in (5), as 

    x = x1 = 
( ) –  ( )

( ) – ( )

a f b b f a

f b f a
    …..(6) 

 x1 is the first approximation to the root of f (x) = 0. 

 

Fig. 3  Method of False Position 

 If f (x1) and f (a) are of opposite signs, then the root lies between a and x1 and we replace b 
by x1 in (6) and obtain the next approximation x2. Otherwise, we replace a by x1 and generate 
the next approximation. The procedure is repeated till the root is obtained to the desired 
accuracy. This method is also called linear interpolation method or chord method. 

EXAMPLE 3 

Find a real root of the equation f (x) = x3 – 2x – 5 = 0 by method of False position. 

SOLUTION 
    f (2) = – 1 and f (3) = 16 

 Hence the root lies in between 2 and 3. 

 Take a = 2, b = 3. 

    x1 =
 ( ) –  ( )

( ) – ( )

a f b b f a

f b f a
 

        = 
2(16) – 3(–1)

16 – (–1)
= 

35

17
 = 2.058823529. 
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      f (x1) = f (2.058823529)  = – 0.390799917 < 0. 

 Therefore the root lies between 0.058823529 and 3. Again, using the formula, we get the 
second approximation as, 

    x2 = 
2.058823529(16) – 3(–0.390799917)

16 – (–0.390799917)
 = 2.08126366 

 Proceeding like this, we get the next approximation as, 

    x3 = 2.089639211, 

    x4 = 2.092739575, 

    x5 = 2.09388371, 

    x6 = 2.094305452, 

    x7 = 2.094460846 

EXAMPLE 4 

Determine the root of the equation cos x – x ex = 0 by the method of False position. 

SOLUTION 

    f (0) = 1 and f (1) = – 2. 177979523 

   a = 0 and b = 1. The root lies in between 0 and 1 

    
   

31466533780
11779795232

1117797952320
1 .

–.–

–.–
x   

    f (x1) = f (0.314653378) = 0.51986. 

  The root lies in between 0.314653378 and 1. 

 Hence,  x2 = 
0.3146653378(–2.177979523) –1(0.51986)

–2.177979523 – 0.51986
 = 0.44673 

 Proceeding like this, we get 
   x3 = 0.49402, 
   x4 = 0.50995, 
   x5 = 0.51520, 
   x6 = 0.51692, 

EXAMPLE 5 
Determine the smallest positive root of x – e–x = 0, correct of three significant figures using 
Regula False method. 

SOLUTION 

 Here,   f (0) = 0 – e–0 = –1 
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 and   f (1) = 1 – e–1 = 0.63212. 

  The smallest positive root lies in between 0 and 1. Here a = 0 and b = 1 

    x1 = 
0(0.63212) –1(–1)

0.63212 1
 = 0.6127 

    f (0.6127) = 0.6127 – e–(0.6127) = 0.0708 

Hence, the next approximation lies in between 0 and 0.6127. Proceeding like this, we get 
   x2 = 0.57219,0  x3 = 0.5677, x4 = 0.5672,  x5 = 0.5671, 

 Hence, the smallest positive root, which is correct up to three decimal places is, 

   x = 0.567 

1.1.4  The Iteration Method 

In the previous methods, we have identified the interval in which the root of f (x) = 0 lies, we 
discuss the methods which require one or more starting values of x, which need not 
necessarily enclose the root of f (x) = 0. The iteration method is one such method, which 
requires one starting value of x. 

 We can use this method, if we can express f (x) = 0, as 

    x =  (x)      ….. (1) 

 We can express f (x) = 0, in the above form in more than one way also. For example, the 
equation x3 + x2 – 1 = 0 can be expressed in the following ways. 

    
–1

2(1 )x x   

    
13 2(1– )x x  

    
12 3(1– )x x  

and so on 

 Let x0 be an approximation to the desired root  , which we can find graphically or 

otherwise. Substituting x0 in right hand side of (1), we get the first approximation as 

    x1 =  (x0)      …..(2) 

 The successive approximations are given by 

    x2 =  (x1) 

    x3 =  (x2)      …..(3) 
    . 
    . 
    . 

    xn =  (xn – 1) 
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Note: The sequence of approximations x0, x1, x2 … xn given by (3) converges to the root   in 

a interval I, if '| ( ) |< 1x  for all x in I. 

EXAMPLE 6 

Using the method of iteration find a positive root between 0 and 1 of the equation 

    x ex = 1 

SOLUTION 

 The given equation can be writhen as x = e–x 

     (x) = e–x. 

 Here | ( ) |< 1 for   < 1x x  

  We can use iterative method 
 Let   x0 = 1 

    x1 = e–1 = 
1

e
 = 0.3678794. 

    x2 =e–0.3678794 = 0.6922006. 
    x3 = e–0.6922006 = 0.5004735 

 Proceeding like this, we get the required root as x = 0.5671. 

EXAMPLE 7 

Find the root of the equation 2x = cos x + 31 correct to three decimal places using Iteration 
method. 

 

SOLUTION 

 Given equation can be written as  

    
(cos 3)

2

x
x


  

    ' sin
| ( ) | 1

2

x
x    

 Hence iteration method can be applied 

 Let  x0 = 
2


 

    x1 = 
1

cos 3 1.5
2 2

   
 
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    x2 =  1
cos1.5 3 1.535

2
   

 Similarly, 
   x3 = 1.518, 
   x4 = 1.526, 
   x5 = 1.522, 
   x6 = 1.524, 
   x7 = 1.523, 
   x8 = 1.524. 

 The required root is x = 1.524 

EXAMPLE 8 

 Find a real root of 2x – log10 x = 7 by the iteration method 

SOLUTION 

 The given equation can be written as, 

    x = 
1

2
 (log10 x + 7) 

 Let   x0 = 3.8 

    x1 = 
1

2
 (log10 3.8 + 7) = 3.79 

     x2 = 
1

2
 (log10 3.79 + 7) = 3.7893 

     x3 = 
1

2
 (log10 3.7893 + 7) = 3.7893. 

  x = 3.7893 is a root of the given equation which is correct to four significant digits. 

1.1.5 Newton Raphson Method 

This is another important method. Let x0 be approximation for the root of f (x) = 0. Let             
x1 = x0 + h be the correct root so that f (x1) = 0. Expanding f (x1) = f (x0 + h) by Taylor series, 
we get 

    f (x1) = f (x1 + h) = f (x0) + h 'f (x0) + 
!

h

2

2

 f   (x0) + …… = 0  …..(1) 

 For small valves of h, neglecting the terms with h2, h3 ….. etc,. We get 
    f (x0) + h 'f (x0) = 0        …..(2) 
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 and   h = – 0
1

0

( )

( )

f x

f x
 

    x1 = x0 + h 

        = x0 – 0
'

0

( )

( )

f x

f x
 

 Proceeding like this, successive approximation x2, x3, … xn + 1 are given by,  

    xn + 1 = xn – 
'

( )

( )
n

n

f x

f x
.        …..(3) 

 For n = 0, 1, 2, …… 

Note:  

(i) The approximation xn+1 given by (3) converges, provided that the initial 

approximation x0 is chosen sufficiently close to root of f (x) = 0. 

(ii) Convergence of Newton-Raphson method: Newton-Raphson method is similar to 

iteration method  

   
'

( )
( ) –

( )

f x
x x

f x
        …..(1)  

differentiating (1) w.r.t to ‘x’ and using condition for convergence of iteration method i.e. 

   '( ) 1x  , 

We get  

   
2

'( ). '( ) – ( ) "( )
1 – 1

[ '( )]

f x f x f x f x

f x
  

Simplifying we get condition for convergence of Newton-Raphson method is  

   2( ). "( ) [ ( )]f x f x f x    

EXAMPLE 9 

 Find a root of the equation x2 – 2x – 5 = 0 by Newton – Raphson method. 

SOLUTION 

 Here f (x) = x3 – 2x – 5. 

    1f (x) = 3x2 – 2 
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 Newton – Raphson method formula is 

     xn + 1 = xn – 
'

( )

( )
n

n

f x

f x
 

     xn + 1 = xn – 
3

2

– 2 – 5

3 – 2
n n

n

x x

x
,  n = 0, 1, 2, . . . .  ..…(1) 

 Let  x0 = 2 

    f (x0) = f (2) = 23 – 2 (2) – 5 = – 1 

 and  1f (x0) = 1f (2) = 3 (2)2 – 2 = 10 

 Putting n = 0 in (I), we get  

    x1 = 2 – 
–1

10
 
 
 

 = 2.1 

    f (x1) = f (2.1) = (2.1)3 – 2 (2.1) – 5 = 0.061 

    1f (x1) = 1f (2.1) = 3 (2.1)2 – 2 = 11.23 

    x2 = 2.1 – 
0.061

11.23
 = 2.094568 

 Similarly, we can calculate x3, x4 …… 

EXAMPLE 10 

Find a root of x sin x + cos x = 0, using Newton – Raphson method 

SOLUTION 

    f (x) = x sin x + cos x. 

    'f (x) = sin x + x cos x – sin x = x cos x 

 The Newton – Raphson method formula is, 

    xn + 1 = xn – 
sin cos

cos
n n n

n n

x x x

x x


,  n = 0, 1, 2,  …. 

 Let   x0 =  = 3.1416. 

    x1 = 3.1416 –
3.1416sin cos

3.1416cos

 


= 2.8233. 
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 Similarly, 

   x2 = 2.7986 

   x3 = 2.7984 

   x4 = 2.7984 

   x = 2.7984 can be taken as a root of the equation x sin x + cos x = 0. 

EXAMPLE 11 

Find the smallest positive root of x – e–x = 0, using Newton – Raphson method. 

SOLUTION 

Here    f (x) = x – e–x 

    1f (x) = 1 + e–x 

    f (0) = – 1 and  f (1) = 0.63212. 

  The smallest positive root of f (x) = 0 lies in between 0 and 1. 

 Let    x0 = 1 

 The Newton – Raphson method formula is, 

    xn + 1 = xn – 
–

–

–

1

x
n

x

x e n

e n
, n = 0, 1, 2, …… 

    f (0) =  f (1) = 0.63212 

    'f  (0) = 'f  (1) = 1.3679 

    x1 = x0 – 
0

0

–
0

–

–

1

x

x

x e

e
 = 1 – 

0.63212

1.3679
 = 0.5379. 

    f (0.5379) = – 0.0461 

    'f  (0.5379) = 1.584. 

    x2 = 0.5379 + 
0.0461

1.584
 = 0.567 

 Similarly,  x3 = 0.56714 

  x = 0.567 can be taken as the smallest positive root of x – e–x = 0., correct to three 
decimal places. 

Note: A method is said to be of order P or has the rate of convergence P, if P is the largest 
positive real number for which there exists a finite constant c   0, such that 

    
P

K 1 Kc         ….. (A) 
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Where K K –x    is the error in the kth iterate. C is called Asymptotic Error constant and 

depends on derivative of f(x) at x =  . It can be shown easily that the order of 

convergence of Newton – Raphson method is 2. 

Exercise - 1.1 

 1. Using Bisection method find the smallest positive root of x3 – x – 4 = 0 which is correct 
to two decimal places. 

[Ans: 1.80] 

 2. Obtain a root correct to three decimal places of x3 – 18 = 0, using Bisection Method. 

[Ans: 2.621] 

 3. Find a root of the equation xex – 1 = 0 which lies in (0, 1), using Bisection Method. 

[Ans: 0.567] 

 4. Using Method of False position, obtain a root of x3 +x2 + x + 7 = 0, correct to three 
decimal places. 

[Ans: – 2.105] 

 5. Find the root of x3 – 2x2 + 3x – 5 = 0, which lies between 1 and 2, using Regula False 
method. 

[Ans: 1.8438] 

 6. Compute the real root of x log x – 1.2 = 0, by the Method of False position. 

[Ans: 2.740] 

 7. Find the root of the equation cos x – x ex = 0, correct to four decimal places by Method 
of False position 

[Ans: 0.5178] 

 8. Using Iteration Method find a real root of the equation x3 – x2 – 1 = 0. 

[Ans: 1.466] 

 9. Find a real root of sin2x = x2 – 1, using iteration Method. 

[Ans: 1.404] 

 10. Find a root of sin x = 10 (x – 1), using Iteration Method. 

[Ans: 1.088] 

 11. Find a real root of cot x = ex, using Iteration Method. 

[Ans: 0.5314] 

 12. Find a root of x4 – x – 10 = 0 by Newton – Raphson Method. 

[Ans: 1.856] 
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 13. Find a real root of x – cos x = 0 by Newton – Raphson Method. 

[Ans: 0.739] 

 14. Find a root of 2x – 3 sin x – 5= 0 by Newton – Raphson Method. 

[Ans: 2.883238] 

 15. Find a smallest positive root of tan x = x by Newton – Raphson Method. 

[Ans: 4.4934] 

 

Summary 

Solution of algebraic and transcendental equations 

 1. The numerical methods to find the roots of f (x) = 0 

  (i) Bisection method: If a function f (x) is continuous between a and b, f (a) and  f 
(b) are of apposite sign then there exists at least one root between a and b. The 

approximate value of the root between them is x0 =
2

a b
 

If f (x0) = 0 then the x0 is the correct root of f (x) = 0. If f (x0) 0, then the root 

either lies in between ,  
2

a b
a

 
 
 

 or ,  
2

a b
b

 
 
 

 depending on whether  f (x0) is 

negative or positive. Again bisection the interval and repeat same method until 
the accurate root is obtained.  

 (ii) Method of false position: (Regula false method): This is another method to find 
the root of f (x) = 0. In this method, we choose two points a and b such that f (a), 
f (b) are of apposite signs. Hence the root lies in between these points [a, f (a)], 
[b, f (b)] using equation of the chord joining these points and taking the point of 
intersection of the chord with the x-axis as an approximate root (using y = 0 on 

x– axis) is x1 = 
 ( )  ( )

( ) ( )

a f b b f a

f b f a




  

  Repeat the same process till the root is obtained to the desired accuracy. 

 (iii) Newton Raphson method: The successive approximate roots are given by 

    xn+1 = xn –
( )

,
( )

n

n

f x

f x
 n = 0, 1, 2 - - - - - 

provided that the initial approximate root x0 is choosen sufficiently close to root 
of f (x) = 0 
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Solved University Questions 

  1. Find the root of the equation 2x – log x = 7 which lies between 3.5 and 4 by            
Regula–False method.       (JNTU 2006) 

Solution  

 Given f(x) = 2x – logx10 = 7      …..(1)  

 Take x0 = 3.5, x1 = 4 

 Using Regula Falsi method 

   x2 = x0 –      1 0
0

1

x – x
. f x

f x – f x
 

   x2 = 3.5 – 
 

4 3 5

0 3979 0 5441

– .

. .
 (–0.5441) 

   x2 = 3.7888 

 Now taking x0 = 3.7888 and x1 = 4 

   x3 = x0 – 
     1 0

0
1 0

x – x
. f x

f x – f x
 

   x3 = 3.7888 – 
4 3 7888

0 3988

– .

.
 (–0.0009) 

   x3 = 3.7893 

 The required root is = 3.789 

 2. Find a real root of xex = 3 using Regula-Falsi method.     (JNTU – 2006)  

Solution  

 Given f(x) = x ex – 3 = 0 

 f (1) = e – 3 = –0.2817 < 0 

 f(2) = 2e2 – 3 = 11.778 > 0 

  One root lies between 1 and 2 

 Now taking x0 = 1, x1 = 2 

 Using Regula – Falsi method 

     x2 = x0 – 
     1 0

0
1 0

x – x
f x

f x – f x
 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
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    x2 = 
   1 11 778 2 0 2817

11 778 0 2817

. – – .

. .
 

    x2 = 1.329 

 Now f (x2) = f(1.329) = 1.329 e1.329 –3 = 2.0199 > 0 

          f (1) = –0.2817 < 0 

  The root lies between 1 and 1.329 taking x0 = 1 and x2 = 1.329 

  Taking x0 = 1 and x2 = 1.329 

   x3 = 
   
   

0 2 2 0

2 0

x f x – x f x

f x – f x
 

       
    

   
1 2 0199 1 329 0 2817

2 0199 0 2817

. . .

. .





 

       
2 3942

2 3016

.

.
  = 1.04  

 Now f (x3) = 1.04 e1.04 –3 = –0.05 < 0 

 The root lies between x2 and x3 

 i.e., 1.04 and 1.329     [  f (x2) > 0 and f (x3) < 0] 

   x4 = 
   
   

2 3 3 2

3 2

x f x – x f x

f x – f x
 = 

     
   

1 04 0 05 1 329 2 0199

0 05 2 0199

. – . – . .

– . – .
 

  x4 = 1.08 is the approximate root 

 3. Find a real root of ex sin x = 1 using Regula – Falsi method  (JNTU 2006) 

Solution  

 Given f(x) = ex sin x – 1 = 0 

 Consider x0 = 2 

  f(x0) = f (2) = e2 sin 2 – 1 = –0.7421 < 0 

  f (x1) = f (3) = e3 sin 3 – 1 = 0.511 > 0 

  The root lies between 2 and 3 

  Using Regula – Falsi method 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
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   x2 = 
   2 0 511 3 0 7421

0 511 0 7421

. .

. .




 

   x2 = 2.93557 

  f (x2) = e2.93557 sin(2.93557) – 1 

  f (x2) = –0.35538 < 0 

  Root lies between x2 and x1 

 i.e., lies between 2.93557 and 3 

    x3 = 
   
   

2 1 1 2

1 2

x f x – x f x

f x – f x
 

                        
    2 93557 0 511 3 35538

0 511 0 35538

. . – –

. .



 

  x3 = 2.96199 

  f (x3) = e2.90199 sin(2.96199) –1 = –0.000819 < 0 

  root lies between x3 and x1 

    x4 = 
   
   

3 1 1 3

1 3

x f x – x f x

f x – f x
 

    x4 
   2 96199 0 511 3 0 000819

0 511 0 000819

. . .

. .





 = 2.9625898 

  f (x4) = e2.9625898 sin(2.9625898) – 1 

  f (x4) = –0.0001898 < 0   

  The root lies between x4 and x1 

    x5 = 
   
   

4 1 1 4

1 4

x f x – x f x

f x – f x
 

       
   

 
2 9625898 0 511 3 0 0001898

0 511 0 0001898

. . .

. .





 

    x5 = 2.9626 

 we have 

    x4 = 2.9625 

   x5 = 2.9626 

   x5 = x4 = 2.962 

 The root lies between 2 and 3 is 2.962 
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 4. Find a real root of x ex  = 2 using Regula – Falsi method  (JNTU 2007) 

Solution  

f (x) = x ex – 2 = 0 

f (0) = –2 < 0,  f (1) = i.e., –2 = (2.7183)–2  

 f (1) = 0.7183 > 0 

 The root lies between 0 and 1 

 Considering x0 = 0, x1 = 1 

 f(0) = f(x0) = –2; f (1) = f (x1) = 0.7183 

By Regula – Falsi method 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
 

   x2 = 
   

 
0 0 7183 1 2 2

0 7183 2 2 7183

. – –

. – – .
  

   x2 = 0.73575 

 Now f (x2) = f (0.73575) = 0.73575 e0.73575 – 2 

  f (x2) = –0.46445 < 0 

 and  f (x1) = 0.7183 > 0 

  The root x3 lies between x1 and x2 

   x3 = 
   
   

2 1 1 2

1 2

x f x – x f x

f x – f x
 

   x3 = 
  0 73575 0 7183

0 7183 0 46445

. .

. .
 

   x3 = 
0 52848 0 46445

1 18275

. .

.


 

   x3 = 
0 992939

1 18275

.

.
 

   x3 = 0.83951 f (x3) = 
 

  2

0 83951

0 83951 –

.

. e
 

  f (x3) = (0.83951) e0.83951 –2 

  f (x3) = –0.056339 < 0 
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  One root lies between x1 and x3 

   x4 = 
   
   

    3 1 1 3

1 3

0 83951 0 7183 1 0 056339

0 7183 0 056339

x f x – x f x . . – – .

f x – f x . .



 

   x4 = 
0 65935

0 774639

.

.
 = 0.851171 

  f (x4) = 0.851171 e0.851171 – 2 = –0.006227 < 0 

 Now x5 lies between x1 and x4 

   x5 = 
   
   

4 1 1 4

1 4

x f x – x f x

f x – f x
 

   x5 = 
    0 851171 0 7183 006227

0 7183 0 006227

. . .

. .




 

   x5 = 
0 617623

0 724527

.

.
 = 0.85245 

 Now f (x5) = 0.85245 e0.85245 e0.85245 – 2 = –0.0006756 < 0 

  One root lies between x1 and x5, (i.e., x6 lies between x1 and x5) 

 Using Regula – Falsi method 

   x6 = 
  0 85245 0 7183 0 0006756

0 7183 0 0006756

. . .

. .




  

   x6 = 0.85260 

 Now f (x6) = –0.00006736 < 0 

  One root x7 lies between x1 and x6 

 By Regula – Falsi method 

   x7 = 
   
   

6 1 1 6

1 6

x f x – x f x

f x – f x
 

   x7 = 
  0 85260 0 7183 0 0006736

0 7183 0 0006736

. . .

. .




 

   x7 = 0.85260 

 From x6 = 0.85260 and x7 = 0.85260 

 A real root of the given equation is 0.85260 
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 5. Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal 
of a number        [JNTU 2008] 

Solution 

  (a) Let n be the number 

    and  x = n     x2 = n 

   If  f (x) = x2 – n = 0     …..(1) 

   Then the solution to f (x) = x2 – n = 0 is x = .n  

      f 1(x) = 2x 

  by Newton Raphson method 

      xi + 1 = xi – 
2

1

( )
–

( ) 2
i i

i
i i

f x x n
x

f x x

 
  

 
 

      xi + 1 = 
1

2 i
i

x
x

x

 
 

 
     …..(2) 

  using the above formula the square root of any number ‘n’ can be found to required 
accuracy 

  (b) To find the reciprocal of a number ‘n’ 

    f (x) = 
1

x
– n = 0     …..(1) 

   solution of (1) is x = 
1

n
 

      f 1(x) = – 2

1

x
 

  Now by Newton-Raphson method,  xi+1 = xi – 1

( )

( )
i

i

f x

f x

 
 
 

 

      xi + 1 = xi – 

2
1

1

1
i

N
x

x

  
 
  
 

 

      xi + 1 = xi  (2 – xi n)  

  using the above formula the reciprocal of a number can be found to required accuracy.  

 



 Engineering Mathematics - III 22 

6.  Find the reciprocal of 18 using Newton–Raphson method        [JNTU 2004]  

Solution 

  The Newton-Raphson method 

    xi+1 = xi (2 – xi n)     …..(1)  

  considering the initial approximate value of x as x0 = 0.055 and given n = 18  

   x1 = 0.055 [2 – (0.055) (18)]  

   x1 = 0.0555 

    x2 = 0.0555 [2 – 0.0555 × 18] 

    x2 = (0.0555) (1.001) 

    x2 = 0.0555 

   Hence x1 = x2 = 0.0555 

   The reciprocal of 18 is 0.0555  

 7.  Find a real root for x tan x +1 = 0 using Newton–Raphson method [JNTU 2006]  

Solution 

  Given f (x) = x tan x + 1 = 0 

    f 1 (x) = x sec2 x + tan x 

    f (2) = 2 tan 2 + 1 = – 3.370079 < 0 

    f (3) = 2 tan 3 + 1 = – 0.572370 > 0 

   The root lies between 2 and 3 

  Take  x0 = 
2 3

2


 = 2.5   (average of 2 and 3)  

  By Newton-Raphson method 

      xi+1 = xi – 1

( )

( )
i

i

f x

f x

 
 
 

 

      x1 = x0 – 0
1

0

( )

( )

f x

f x

 
 
 

 

      x1 = 2.5 – 
( 0.86755)

3.14808


 

      x1 = 2.77558 
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      x2 = x1 – 
1

( )
;

( )
i

i

f x

f x
       

    f ( x1) = – 0.06383,  f 1( x1) =  2.80004 

      x2 = 2.77558 – 
( 0.06383)

2.80004


 

      x2 = 2.798 

     f (x2) = – 0.001080,  f 1(x2) = 2.7983 

      x3 = x2 – 2
1

2

( )

( )

f x

f x
=  2.798 – 

[  0.001080]

2.7983


 

      x3 = 2.798. 

    x2 = x3 

   The real root of x tan x + 1 = 0 is 2.798 

 8.  Find a root of ex sin x = 1 using Newton–Raphson method [JNTU 2006]  

Solution 

  Given f (x) = ex sin x – 1 = 0 

    f 1 (x) = ex sec x + ex cos x 

   Take x1 = 0, x2 = 1 

      f (0) = f (x1) = e0 sin 0 – 1 = –1 < 0 

      f (1) = f (x2) = e1 sin (1) – 1 = 1.287 > 0 

  The root of the equation lies between 0 and 1 

  Using Newton-Raphson method 

      xi + 1 = xi – 
1

( )

( )
i

i

f x

f x
 

  Now consider x0 = average of 0 and 1 

      x0 = 
1 0

2


 = 0.5 

      x0 = 0.5 

      f (x0) = e0.5 sin (0.5) – 1 

      f 1 (x0) = e0.5 sin (0.5) + e0.5 cos (0.5) = 2.2373 

      x1 = x0 – 0
1

0

( )

( )

f x

f x
 = 0.5 – 

( 0.20956)

2.2373


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      x1 = 0.5936 

      f (x1) = e0.5936 sin (0.5936) – 1 = 0.0128 

      f 1 (x1) = e0.5936 sin (0.5936) + e0.5936 cos (0.5936) = 2.5136 

      x2 = x1 – 1
1

1

( )

( )

f x

f x
 = 0.5936 – 

(0.0128)

2.5136
 

 x2 = 0.58854 

  similarly  x3 = x2 – 1
1

1

( )

( )

f x

f x
 

      f (x2) = e0.58854 sin (0.58854) – 1 = 0.0000181 

      f 1 (x2) = e0.58854 sin (0.58854) + e0.58854 cos (0.58854) 

       f (x2) = 2.4983 

 x3 = 0.58854 – 
0.0000181

2.4983
 

      x3 = 0.5885 

 x2 – x3 = 0.5885 

  0.5885 is the root of the equation ex sin x – 1 = 0 

 9.  Find a real root of the equation xex – cos x = 0 using Newton-Raphson method 
          [JNTU-2006] 

Solution 

  Given f (x) = ex – cos x = 0 

    f 1 (x) = xex + ex + sin x = (x + 1) ex + sin x 

   Take f (0) = 0 – cos 0 = –1 < 0 

    f (1) = e – cos 1 = 2.1779 > 0 

    The root lies between 0 and 1 

  Let x0 = 
0 1

2


 = 0.5 (average of 0 and 1) 

  Newton-Raphson method 

      xi + 1 = xi – 
1

( )

( )
i

i

f x

f x
 

      xi + 1 = x0 – 0
1

0

( )

( )

f x

f x
 = 0.5 – 

( 0.053221)

(1.715966)


  



Solution of Algebraic and Transcendental Equations  25

      x1 = 0.5310 

      f (x1) = 0.040734, f 1(x1) = 3.110063  

      x2 = x1 – 1
1

1

( )

( )

f x

f x
 = 0.5310 – 

0.040734

3.110064
 

 x2 = 0.5179 ; f(x2) = 0.0004339, f 1(x2) = 3.0428504 

     x3 = 0.5179 – 
(0.0004339)

3.0428504
 

     x3 = 0.5177 

      f (x3) = 0.000001106  

      f (x3) = 3.04214  

      x4 = x3 – 3

3

( )

( )

f x

f x
 = 0.5177 – 

0.000001106

3.04212
 

     x4 = 0.5177 

     x3 = x4 = 0.5177 

  The root of xex – cos x = 0 is 0.5177 

 10.  Find a root of the equation x4 – x – 10 = 0 using Bisection method correct to                       
2 decimal places.        [JNTU 2008] 

Solution 

 Let f(x) = x4 – x – 10 = 0 be the given equation. We observe that f(1) < 0, then f(2) >0. 
So one root lies between 1 and 2. 

  Let x0 = 1, x1 = 2; 

 Take x2 = 0 1

2

x + x
 = 1.5;   f (1.5) < 0; 

   The root lies between 1.5 and 2 

  Let us take x3 = 
1.5 2

2


 = 1.75; we find that f (1.75) < 0, 

  The root lies between 1.75 and 2 

So we take now x4 =  
1.75 1.875

2


 = 1.8125 = 1.81 can be taken as the root of the 

given equation. 
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 11.  Find a real root of equation x3 – x – 11 = 0 by Bisection method.    [JNTU-2007] 

Solution 

 Given equation is f (x) = x3 – x – 11 = 0  

We observe that f (2) = –5 < 0 and f (3) = 13 > 0. 

 A root of (1) lies between 2 and 3; take x0 = 2, x = 3; 

Let x2 = 0 1 2 3
2.5

2 2

x x 
  ;  Since f (2.5) > 0, the root lies between 2 and 2.5 

 Taking x3 = 
2 2.5

2.25
2


 , we note that f (2.25) < 0; 

  The root can be taken as lying between 2.25 and 2.5. 

   The root = 
2.25 2.5

2.375
2


  

 12. Find a real root of x3 – 5x + 3 = 0 using Bisection method.  [JNTU-2007] 

Solution 

  Let f (x) = x3 – 5x + 3 = 0 be the equation given 

  Since f (1) = –1 < 0 and f (2) = 1 > 0, a real root lies between 1 and 2. 

  i.e., x0 = 1, x1 = 2;  take x2 = 
1 2

1.5
2


 ; f (1.5) = –1.25 < 0   

   The root lies between 1.5 and 2; 

   Take x3 = 
1.5 2

1.75
2


  

  Now  f (1.75) = 
3

7 7
– 5 3

4 4
       
   

 = –ve;  

   The root lies between 1.75 and 2 

  Let   x4 = 
1.75 2

2


 = 1.875;  

  We find that f(1.875) = (1.875)3 – 5(1.875) + 3 > 0 

   The root of the given equation lies between 1.75 and 1.875 

   The root = 
1.75 1.875

2


 = 1.813 
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 13. Find a real root of the equation x3 – 6x – 4 = 0 by Bisection method      [JNTU-2006] 

Solution 

  Here f (x) = x3 – 6x – 4  

  Take x0 = 2, x1 = 3;    (  f (2) < 0, f (3) > 0) 

  x1 = 2.5; f(x1) < 0; take x3 = 
2.5 3

2


 = 2.75 

  f (2.75) > 0    x4 = 
2.5 2.75

2


 = 2.625 

  f (2.625) < 0    Root lies between 2.625 and 2.75  

   Approximately the root will be = 
2.625 2.75

2


 = 2.69  

Objective Type Questions 

I.  Choose correct answer: 

 1. An example of an algebraic equation is 

  (1)  tan x = ex (2)  x = log x (3) x3 – 5x + 3 = 0 (4) None           

[Ans: (3)] 

 2. An example of a transcendental equation is 

  (1) x3 – 2x – 10 = 0  (2) x3 ex = 5  

  (3) x2 + 11x – 1 = 0  (4) None 

[Ans: (2)] 

 3. In finding a real root of the equation x3 – x – 10 = 0 by bisection, if the root lies 
between x0 = 2 and x1 = 3, then, x2 = 

  (1) 2.5 (2) 2.75 (3) 2.60 (4) None         

[Ans: (1)] 

 4. If (a) and (b) are of opposite signs and the real root of the equation  (x) = 0 is 
found by false position method, the first approximation x1, of the root is 

  (1) 
   
   

  a b b a

b a

  
  

  (2) 
   
   

  a b b a

b a

   
  

   

  (3) 
   

   
  

–

ab a b

a b

 
 

  (4) 
   
   

 –  

–

a b b a

b a

 
 

        

[Ans: (4)] 
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 5. The two initial values of the roots of the equation x3 – x – 3 = 0 are  

  (1) (–1, 0) (2) 1, 2 (3) –2, 1 (4) (1, 0) 

[Ans: (2)] 

 6. The iteration method is said to have pth order convergence if for any finite constant             
K ≠ 0 

  (1) –1
P

n ne K e   (2) 1
P

n ne K e   

  (3) 01
P

ne K e    (4) None 

[Ans: (1)] 

 7. Newton-Raphson method formula to find (n + 1)th approximation  of root of f(x) = 0 is 

  (1) 1
'( )

–
( )

n
n n

n

f x
x x

f x    (2) 1
( )

'( )
n n

n
n

x f x
x

f x   

  (3) 1
( )

–
'( )

n
n n

n

f x
x x

f x    (4) None 

[Ans: (3)] 

 8. In the bisection method e0 is the initial error and en is the error in nth iteration 

  (1) 
1

2
 (2) 1 (3) 

1

2n
 (4)   None  

[Ans: (3)] 

 9. Which of the following methods has linear rate of convergence  

  (1) Regular flase   (2) Bisection  

  (3) Newton-Raphson  (4) None 

[Ans: (1)] 

 10. A non linear equation x3 + x2 – 1 = 0 is x = (x), then the choice of (x) for which the 
iteration scheme xn =  (xn–1) x0 = 1 converge is (x)= 

  (1) (1 – x2)1/3 (2) 
1

1 x
 (3) 31– x  (d) None  

[Ans: (2)] 

 

 

 

 



Math 202 Jerry L. Kazdan

Finding Square Roots Using Newton’s Method

Let A > 0 be a positive real number. We want to show that there is a real number x with
x2 = A . We already know that for many real numbers, such as A = 2, there is no rational
number x with this property. Formally, let fx) := x2 − A . We want to solve the equation
f(x) = 0.

Newton gave a useful general recipe for solving equations of the form f(x) = 0. Say we
have some approximation xk to a solution. He showed how to get a better approximation
xk+1 . It works most of the time if your approximation is close enough to the solution.

Here’s the procedure. Go to the point (xk, f(xk)) and find the tangent line. Its equation
is

y = f(xk) + f ′(xk)(x − xk).

The next approximation, xk+1 , is where this tangent line crosses the x axis. Thus,

0 = f(xk) + f ′(xk)(xk+1 − xk), that is, xk+1 = xk −
f(xk)

f ′(xk)
.

Applied to compute square roots, so f(x) := x2 − A , this gives

xk+1 =
1

2

(

xk +
A

xk

)

. (1)

From this, by simple algebra we find that

xk+1 − xk =
1

2xk

(A − x2
k). (2)

Pick some x0 so that x2
0 > A . then equation (2) above shows that subsequent approxi-

mations x1 , x2 , . . . , are monotone decreasing. Equation (2) then shows that the sequence
x1 ≥ x2 ≥ x3 ≥ . . . , is monotone decreasing and non-negative. By the monotone conver-
gence property, it thus converges to some limit x .

I claim that x2 = A . Rewrite (2) as A − x2
k

= 2xk(xk+1 − xk) and let k → ∞ . Since
xk+1 − xk → 0 and xk is bounded, this is obvious.

We now know that
√

A exists as a real number. then it is simple to use (1) to verify that

xk+1 −
√

A =
1

2xk

(xk −
√

A)2. (3)

Equation (3) measures the error xk+1 −
√

A . It shows that the error at the next step is the
square of the error in the previous step. Thus, if the error at some step is roughly 10−6 (so
6 decimal places), then at the next step the error is roughly 10−12 (so 12 decimal places).

1



Example: To 20 decimal places,
√

7 = 2.6457513110645905905. Let’s see what Newton’s
method gives with the initial approximation x0 = 3:

x1 = 2.6666666666666666666 x2 = 2.6458333333333333333

x3 = 2.6457513123359580052 x4 = 2.6457513110645905908

Remarkable accuracy.

2
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arl Gustav Jacob Jacobi was the second
son of a successful banker in Potsdam,
Germany. After completing his secondary
schooling in Potsdam in 1821, he entered the
University of Berlin. In 1825, having been
granted a doctorate in mathematics, Jacobi
served as a lecturer at the University of Berlin.
Then he accepted a position in mathematics at
the University of Königsberg.

Jacobi’s mathematical writings encom-
passed a wide variety of topics, including
elliptic functions, functions of a complex
variable, functional determinants (called
Jacobians), differential equations, and Abelian
functions. Jacobi was the first to apply elliptic
functions to the theory of numbers, and he
was able to prove a longstanding conjecture
by Fermat that every positive integer can be

written as the sum of four perfect squares.
(For instance, ) He
also contributed to several branches of mathe-
matical physics, including dynamics, celestial
mechanics, and fluid dynamics.

In spite of his contributions to applied
mathematics, Jacobi did not believe that math-
ematical research needed to be justified by its
applicability. He stated that the sole end of
science and mathematics is “the honor of the
human mind” and that “a question about 
numbers is worth as much as a question about
the system of the world.”

Jacobi was such an incessant worker that in
1842 his health failed and he retired to Berlin.
By the time of his death in 1851, he had
become one of the most famous mathemati-
cians in Europe.

10 � 12 � 12 � 22 � 22.

10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
In Chapter 1 two methods for solving a system of n linear equations in n variables were 
discussed. When either of these methods (Gaussian elimination and Gauss-Jordan elimina-
tion) is used with a digital computer, the computer introduces a problem that has not yet
been discussed—rounding error.

Digital computers store real numbers in floating point form,

where k is an integer and the mantissa M satisfies the inequality For 
instance, the floating point forms of some real numbers are as follows.

Real Number Floating Point Form

527

0.00045  0.45 � 10�3

 �0.381623 � 101�3.81623

 0.527 � 103

0.1 ≤ M < 1.

±M � 10k,

Carl Gustav Jacob

Jacobi
1 8 0 4 – 1 8 5 1

C



The number of decimal places that can be stored in the mantissa depends on the computer.
If n places are stored, then it is said that the computer stores n significant digits. Additional
digits are either truncated or rounded off. When a number is truncated to n significant
digits, all digits after the first n significant digits are simply omitted. For instance, truncated
to two significant digits, the number 0.1251 becomes 0.12.

When a number is rounded to n significant digits, the last retained digit is increased by
one if the discarded portion is greater than half a digit, and the last retained digit is not
changed if the discarded portion is less than half a digit. For instance, rounded to two sig-
nificant digits, 0.1251 becomes 0.13 and 0.1249 becomes 0.12. For the special case in
which the discarded portion is precisely half a digit, round so that the last retained digit is
even. So, rounded to two significant digits, 0.125 becomes 0.12 and 0.135 becomes 0.14.

Whenever the computer truncates or rounds, a rounding error that can affect subsequent
calculations is introduced. The result after rounding or truncating is called the stored value.

E X A M P L E  1 Finding the Stored Value of Number

Determine the stored value of each of the following real numbers in a computer that rounds
to three significant digits.

(a) 54.7 (b) 0.1134 (c)
(d) 0.08335 (e) 0.08345

Solution Number Floating Point Form Stored Value

(a) 54.7
(b) 0.1134
(c)
(d) 0.08335
(e) 0.08345

Note in parts (d) and (e) that when the discarded portion of a decimal is precisely half a
digit, the number is rounded so that the stored value ends in an even digit.

R E M A R K : Most computers store numbers in binary form (base two) rather than decimal
form (base ten). Because rounding occurs in both systems, however, this discussion will be
restricted to the more familiar base ten.

Rounding error tends to propagate as the number of arithmetic operations increases. This
phenomenon is illustrated in the following example.

E X A M P L E 2 Propagation of Rounding Error

Evaluate the determinant of the matrix

A � �0.12

0.12

0.23

0.12�,

 0.834 � 10�1 0.8345 � 10�1

 0.834 � 10�1 0.8335 � 10�1

 �0.823 � 101 �0.82256 � 101�8.2256
 0.113 � 100 0.1134 � 100

 0.547 � 102 0.547 � 102 

�8.2256
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when rounding each intermediate calculation to two significant digits. Then find the exact
solution and compare the two results.

Solution Rounding each intermediate calculation to two significant digits, produces the following.

Round to two significant digits

However, the exact solution is

So, to two significant digits, the correct solution is . Note that the rounded solution
is not correct to two significant digits, even though each arithmetic operation was performed
with two significant digits of accuracy. This is what is meant when it is said that arithmetic
operations tend to propagate rounding error.

In Example 2, rounding at the intermediate steps introduced a rounding error of

Rounding error

Although this error may seem slight, it represents a percentage error of

Percentage error

In most practical applications, a percentage error of this magnitude would be intolerable.
Keep in mind that this particular percentage error arose with only a few arithmetic steps.
When the number of arithmetic steps increases, the likelihood of a large percentage error
also increases.

Gaussian Elimination with Partial Pivoting
For large systems of linear equations, Gaussian elimination can involve hundreds of arith-
metic computations, each of which can produce rounding error. The following straightfor-
ward example illustrates the potential magnitude of the problem.

E X A M P L E  3 Gaussian Elimination and Rounding Error

Use Gaussian elimination to solve the following system.

After each intermediate calculation, round the result to three significant digits.

 11.2x1 �  4.30x2 �  0.605x3 �  4.415

 �1.31x1 �  0.911x2 �  1.99x3 �  �5.458

 0.143x1 �  0.357x2 �  2.01x3 �  �5.173

0.0008

0.0132
� 0.061 � 6.1%.

�0.0132 � (�0.014) � 0.0008.

�0.013

  � �0.0132.

 �A� � 0.0144 � 0.0276

  � �0.014

 � 0.014 � 0.028

 � 0.0144 � 0.0276

 �A� � �0.12)(0.12) � (0.12)(0.23)
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T E C H N O L O G Y
N O T E

You can see the effect of round-
ing on a calculator. For example,
the determinant of

is However, the TI-86
calculates the greatest integer
of the determinant of A to be

int det A Do you
see what happened?

� �5.�5:

�4.

A � �3

2

11

6�



Solution Applying Gaussian elimination to the augmented matrix for this system produces the
following.

So and using back-substitution, you can obtain and 
Try checking this “solution” in the original system of equations to see that it is not cor-
rect. The correct solution is and 

What went wrong with the Gaussian elimination procedure used in Example 3? Clearly,
rounding error propagated to such an extent that the final “solution” became hopelessly 
inaccurate.

Part of the problem is that the original augmented matrix contains entries that differ in
orders of magnitude. For instance, the first column of the matrix

has entries that increase roughly by powers of ten as one moves down the column. In 
subsequent elementary row operations, the first row was multiplied by 1.31 and and�11.2

�
0.143

�1.31

11.2

0.357

0.911

�4.30

2.01

1.99

�0.605

�5.17

�5.46

4.42
�

x3 � �3.�x1 � 1, x2 � 2,�

x1 � �0.950.x2 � �2.82x3 � �2.00,

�
1.00

�0.00

0.00

2.50

1.00

0.00

14.1

4.89

1.00

�36.2

�12.6

�2.00
�

�
1.00

�0.00

0.00

2.50

1.00

0.00

14.1

4.89

�1.00

�36.2

�12.6

2.00
�

�
1.00

�0.00

0.00

2.50

1.00

�32.3

14.1

4.89

�159.

�36.2

�12.6

409.
�

�
1.00

�0.00

0.00

2.50

4.19

�32.3

14.1

20.5

�159.

�36.2

�52.9

409.
�

�
1.00

�0.00

11.2

2.50

4.19

�4.30

14.1

20.5

�0.605

�36.2

�52.9

4.42
�

�
1.00

�1.31

11.2

2.50

0.911

�4.30

14.1

1.99

�0.605

�36.2

�5.46

4.42
�

�
 0.143

�1.31

11.2

0.357

0.911

�4.30

2.01  

1.99

�0.605

�5.17

�5.46

4.42
�
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Dividing the first row 

by 0.143 produces a 

new first row.

Adding 1.31 times the

first row to the second row

produces a new second row.

Adding times the

first row to the third row

produces a new third row.

�11.2

Dividing the second row

by 4.19 produces a new

second row.

Adding 32.3 times the

second row to the third row

produces a new third row.

Multiplying the third row

by produces a new

third row.

�1



the second row was multiplied by 32.3. When floating point arithmetic is used, such large
row multipliers tend to propagate rounding error. This type of error propagation can be less-
ened by appropriate row interchanges that produce smaller multipliers. One method for re-
stricting the size of the multipliers is called Gaussian elimination with partial pivoting.

Example 4 shows what happens when this partial pivoting technique is used on the
system of linear equations given in Example 3.

E X A M P L E  4 Gaussian Elimination with Partial Pivoting

Use Gaussian elimination with partial pivoting to solve the system of linear equations given
in Example 3. After each intermediate calculation, round the result to three significant
digits.

Solution As in Example 3, the augmented matrix for this system is

↑
Pivot

In the left column 11.2 is the pivot because it is the entry that has the largest absolute value.
So, interchange the first and third rows and apply elementary row operations as follows.

�
1.00

�1.31

0.143

�0.384

0.911

0.357

�0.0540

1.99

2.01

0.395

�5.46

�5.17
�

�
11.2

�1.31

0.143

�4.30

0.911

0.357

�0.605

1.99

2.01

4.42

�5.46

�5.17
�

�
0.143

�1.31

11.2

0.357

0.911

�4.30

2.01

1.99

�0.605

�5.17

�5.46

4.42
�.
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Gaussian Elimination
with Partial Pivoting

1. Find the entry in the left column with the largest absolute value. This entry is called
the pivot.

2. Perform a row interchange, if necessary, so that the pivot is in the first row.
3. Divide the first row by the pivot. (This step is unnecessary if the pivot is 1.)
4. Use elementary row operations to reduce the remaining entries in the first column to

zero.

The completion of these four steps is called a pass. After performing the first pass,
ignore the first row and first column and repeat the four steps on the remaining subma-
trix. Continue this process until the matrix is in row-echelon form.

Interchange the

first and third

rows.

Dividing the first row

by 11.2 produces a new

first row.



This completes the first pass. For the second pass consider the submatrix formed by delet-
ing the first row and first column. In this matrix the pivot is 0.412, which means that the
second and third rows should be interchanged. Then proceed with Gaussian elimination as
follows.

Pivot

This completes the second pass, and you can complete the entire procedure by dividing
the third row by as follows.

So and back-substitution produces and which agrees
with the exact solution of and when rounded to three significant
digits.

R E M A R K : Note that the row multipliers used in Example 4 are 1.31, and
as contrasted with the multipliers of 1.31, 11.2, and 32.3 encountered in Example 3.

The term partial in partial pivoting refers to the fact that in each pivot search only entries
in the left column of the matrix or submatrix are considered. This search can be extended
to include every entry in the coefficient matrix or submatrix; the resulting technique is
called Gaussian elimination with complete pivoting. Unfortunately, neither complete 
pivoting nor partial pivoting solves all problems of rounding error. Some systems of linear

�0.408,
�0.143,

x3 � �3x1 � 1, x2 � 2,
x1 � 1.00,x2 � 2.00x3 � �3.00,

�
1.00

�0.00

0.00

�0.384

1.00

0.00

�0.0540

4.90

1.00

0.395

�12.7

�3.00
�

�0.0800

�
1.00

�0.00

0.00

�0.384

1.00

0.00

�0.0540

4.90

�0.0800

0.395

�12.7

0.240
�

�
1.00

�0.00

0.00

�0.384

1.00

0.408

�0.0540

4.90

1.92

0.395

�12.7

�4.94
�

�
1.00

�0.00

0.00

�0.384

0.412

0.408

�0.0540

2.02

1.92

0.395

�5.23

�4.94
�

�
1.00

�0.00

0.00

�0.384

0.408

0.412

�0.0540

1.92

2.02

0.395

�4.94

�5.23
�

�
1.00

�0.00

0.143

�0.384

0.408

0.357

�0.0540

1.92

2.01

0.395

�4.94

�5.17
�
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Adding 1.31 times the first 

row to the second row 

produces a new second row.

Adding times the

first row to the third row

produces a new third row.

�0.143

Interchange the 

second and third

rows.

Dividing the second row

by 0.412 produces a new 

second row.

Adding times the

second row to the third row 

produces a new third row.

�0.408

Dividing the third row

by produces a

new third row.

�0.0800



equations, called ill-conditioned systems, are extremely sensitive to numerical errors. For
such systems, pivoting is not much help. A common type of system of linear equations that
tends to be ill-conditioned is one for which the determinant of the coefficient matrix is
nearly zero. The next example illustrates this problem.

E X A M P L E  5 An Ill-Conditioned System of Linear Equations

Use Gaussian elimination to solve the following system of linear equations.

Round each intermediate calculation to four significant digits.

Solution Using Gaussian elimination with rational arithmetic, you can find the exact solution to be
and But rounding to four significant digits

introduces a large rounding error, as follows.

So and back-substitution produces

This “solution” represents a percentage error of 25% for both the x-value and the y-value.
Note that this error was caused by a rounding error of only 0.0005 (when you rounded
1.0025 to 1.002).

 � �10,000.

 x � �y

y � 10,000

�1

0

1

1.00

0

10,000�

�1

0

1

0.002

0

20�

�1

1

1

1.002

0

20�

401�400 � 1.0025x � �8000.y � 8000

 x �
401
400

y � 20

 x �  y �  0
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In Exercises 1–8, express the real number in floating point form.

1. 4281 2. 321.61 3. 4.

5. 6. 0.00026 7. 8.

In Exercises 9–16, determine the stored value of the real number in
a computer that rounds to (a) three significant digits and (b) four
significant digits.

9. 331 10. 21.4 11. 12. 216.964

13. 14. 15. 16.

In Exercises 17 and 18, evaluate the determinant of the matrix,
rounding each intermediate calculation to three significant digits.
Then compare the rounded value with the exact solution.

17. 18.

In Exercises 19 and 20, use Gaussian elimination to solve the
system of linear equations. After each intermediate calculation,
round the result to three significant digits. Then compare this solu-
tion with the exact solution.

19. 20.

20.

In Exercises 21–24, use Gaussian elimination without partial pivot-
ing to solve the system of linear equations, rounding to three 
significant digits after each intermediate calculation. Then use 
partial pivoting to solve the same system, again rounding to three
significant digits after each intermediate calculation. Finally, com-
pare both solutions with the given exact solution.

21. 22.

21. 22.

23.

23.

23.

24.

24.

24.

�Exact: x � 1, y � 1, z � 1�
 81.400x � 61.12y � 1.180z � 83.7

 4.810x � 05.92y � 1.110z � 00.0

 0.007x � 61.20y � 0.093z � 61.3

�Exact: x � �0.49, y � 0.1, z � 20�
 2x � 4.05y � 0.05000z � �0.385

 �x � 4.00y � 0.00600z � �0.21

 x � 4.01y � 0.00445z � �0.00

�Exact: x � 10, y � 1��Exact: x � 1, y � 1�
99.00x � 449.0y � 541.06x � 6.20y � 12.20

00.51x � 992.6y � 997.76x � 1.04y � 12.04

81.6x � 97.4y � 179.04.66x � 64.4y � 111.0

14.4x � 17.1y � 031.51.21x � 16.7y � 028.8

�2.12

1.07

4.22

2.12�� 1.24

66.00

56.00

1.02�

1
6

1
7

5
32

7
16

�92.646

161
2

1
8�0.00121

�21.001�2.62

In Exercises 25 and 26, use Gaussian elimination to solve the 
ill-conditioned system of linear equations, rounding each intermedi-
ate calculation to three significant digits. Then compare this solu-
tion with the given exact solution.

25. 26.

27. Consider the ill-conditioned systems

and

Calculate the solution to each system. Notice that although the
systems are almost the same, their solutions differ greatly.

28. Repeat Exercise 27 for the systems

and

29. The Hilbert matrix of size is the symmetric
matrix where As n increases,
the Hilbert matrix becomes more and more ill-conditioned.
Use Gaussian elimination to solve the following system of
linear equations, rounding to two significant digits after each
intermediate calculation. Compare this solution with the exact
solution and 

30. Repeat Exercise 29 for where 
rounding to four significant digits. Compare this solution with
the exact solution 

31. The inverse of the Hilbert matrix has integer entries.
Use your computer of graphing calculator to calculate the 
inverses of the Hilbert matrices for For
what values of n do the inverses appear to be accurate?

n � 4, 5, 6, and 7.Hn

Hnn � n

140�.
�x1 � �4, x2 � 60, x3 � �180, and x4 �

b � �1, 1, 1, 1�T,H4x � b,

 13x1 �
1
4x2 �

1
5x3 � 1

 12x1 �
1
3x2 �

1
4x3 � 1

 x1 �
1
2x2 �

1
3x3 � 1

x3 � 30�.x2 � �24,�x1 � 3,

aij � 1��i � j � 1�.Hn � �aij	,
n � nn � n

 �1.001x � y � 0. �1.001x � y � 0.001

 x � y � 0 x � y � 0

 x �  1.0001y � 2.0001. x �  1.0001y � 2

 x �  y � 2 x �  y � 2

y � 48,060�y � �10,818�
�Exact: x � 48,010,�Exact: x � 10,820,

x �

�x �

800
801 y �

y �

10

50

x �

x �

y �
600
601 y �

2

20
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10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS
As a numerical technique, Gaussian elimination is rather unusual because it is direct. That
is, a solution is obtained after a single application of Gaussian elimination. Once a “solu-
tion” has been obtained, Gaussian elimination offers no method of refinement. The lack of
refinements can be a problem because, as the previous section shows, Gaussian elimination
is sensitive to rounding error.

Numerical techniques more commonly involve an iterative method. For example, in 
calculus you probably studied Newton’s iterative method for approximating the zeros of a
differentiable function. In this section you will look at two iterative methods for approxi-
mating the solution of a system of n linear equations in n variables.

The Jacobi Method
The first iterative technique is called the Jacobi method, after Carl Gustav Jacob Jacobi
(1804–1851). This method makes two assumptions: (1) that the system given by

has a unique solution and (2) that the coefficient matrix A has no zeros on its main diago-
nal. If any of the diagonal entries are zero, then rows or columns must be
interchanged to obtain a coefficient matrix that has nonzero entries on the main diagonal.

To begin the Jacobi method, solve the first equation for the second equation for 
and so on, as follows.

Then make an initial approximation of the solution,

Initial approximation

and substitute these values of into the right-hand side of the rewritten equations to obtain
the first approximation. After this procedure has been completed, one iteration has been

xi

(x1, x2, x3, . . . , xn),

xn �
1

ann
 (bn � an1x1 � an2x2 � . . . � an,n�1 xn�1�

.

.

.

x2 �
1

a22
 (b2 � a21x1 � a23x3 � . . . � a2n xn)

x1 �
1

a11
 (b1 � a12x2 � a13x3 � . . . � a1n xn)

x2,x1,

a11, a22, 
. . . , ann

an1x1 � an2x2 � . . . � annxn � bn

.

.

.
.
.
.

.

.

.
.
.
.

a21x1 � a22x2 � . . . � a2nxn � b2

a11x1 � a12x2 � . . . � a1nxn � b1
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performed. In the same way, the second approximation is formed by substituting the first
approximation’s x-values into the right-hand side of the rewritten equations. By repeated 
iterations, you will form a sequence of approximations that often converges to the actual
solution. This procedure is illustrated in Example 1.

E X A M P L E  1 Applying the Jacobi Method

Use the Jacobi method to approximate the solution of the following system of linear
equations.

Continue the iterations until two successive approximations are identical when rounded to
three significant digits.

Solution To begin, write the system in the form

Because you do not know the actual solution, choose

Initial approximation

as a convenient initial approximation. So, the first approximation is

Continuing this procedure, you obtain the sequence of approximations shown in Table 10.1.

TABLE 10.1

n 0 1 2 3 4 5 6 7

x1 0.000 0.146 0.192 0.181 0.185 0.186 0.186

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331

x3 0.000 �0.423�0.423�0.424�0.421�0.416�0.517�0.429

�0.200

x3 � �
3
7 �

2
7(0) �

1
7(0) � �0.429.

x2 � �
2
9 �

3
9(0) �

1
9(0) � �0.222

x1 � �
1
5 �

2
5(0) �

3
5(0) � �0.200

x3 � 0x2 � 0,x1 � 0,

x3 � �
3
7 �

2
7 x1 �

1
7 x2 .

x2 � �
2
9 �

3
9x1 �

1
9x3

x1 � �
1
5 �

2
5 x2 �

3
5x3

 2x1 �  x2 �  7x3 �  3

 �3x1 �  9x2 �  x3 �  2

 5x1 � 2x2 �  3x3 �  �1
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Because the last two columns in Table 10.1 are identical, you can conclude that to three
significant digits the solution is

For the system of linear equations given in Example 1, the Jacobi method is said to
converge. That is, repeated iterations succeed in producing an approximation that is correct
to three significant digits. As is generally true for iterative methods, greater accuracy would
require more iterations.

The Gauss-Seidel Method
You will now look at a modification of the Jacobi method called the Gauss-Seidel method,
named after Carl Friedrich Gauss (1777–1855) and Philipp L. Seidel (1821–1896). This
modification is no more difficult to use than the Jacobi method, and it often requires fewer
iterations to produce the same degree of accuracy.

With the Jacobi method, the values of obtained in the nth approximation remain
unchanged until the entire th approximation has been calculated. With the Gauss-
Seidel method, on the other hand, you use the new values of each as soon as they are
known. That is, once you have determined from the first equation, its value is then used
in the second equation to obtain the new Similarly, the new and are used in 
the third equation to obtain the new and so on. This procedure is demonstrated in
Example 2.

E X A M P L E  2 Applying the Gauss-Seidel Method

Use the Gauss-Seidel iteration method to approximate the solution to the system of 
equations given in Example 1.

Solution The first computation is identical to that given in Example 1. That is, using 
as the initial approximation, you obtain the following new value for 

Now that you have a new value for , however, use it to compute a new value for That
is,

Similarly, use and to compute a new value for That is,

So the first approximation is , and Continued
iterations produce the sequence of approximations shown in Table 10.2.

x3 � �0.508.x2 � 0.156,x1 � �0.200

x3 � �
3
7 �

2
7(�0.200) �

1
7(0.156) � �0.508.

x3.x2 � 0.156x1 � �0.200

x2 �
2
9 �

3
9(�0.200) �

1
9(0) � 0.156.

x2.x1

x1 � �
1
5 �

2
5(0) �

3
5(0) � �0.200

x1.(0, 0, 0)
(x1, x2, x3) �

x3,
x2x1x2.

x1

xi

(n � 1)
xi

x3 � �0.423.x2 � 0.331,x1 � 0.186,
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TABLE 10.2

n 0 1 2 3 4 5

x1 0.000 0.167 0.191 0.186 0.186

x2 0.000 0.156 0.334 0.333 0.331 0.331

x3 0.000

Note that after only five iterations of the Gauss-Seidel method, you achieved the same
accuracy as was obtained with seven iterations of the Jacobi method in Example 1.

Neither of the iterative methods presented in this section always converges. That is, it is
possible to apply the Jacobi method or the Gauss-Seidel method to a system of linear equa-
tions and obtain a divergent sequence of approximations. In such cases, it is said that the
method diverges.

E X A M P L E  3 An Example of Divergence

Apply the Jacobi method to the system

using the initial approximation and show that the method diverges.

Solution As usual, begin by rewriting the given system in the form

Then the initial approximation (0, 0) produces

as the first approximation. Repeated iterations produce the sequence of approximations
shown in Table 10.3.

TABLE 10.3

n 0 1 2 3 4 5 6 7

x1 0

x2 0 �300,124�42,874�8574�1244�244�34�6

�214,374�42,874�6124�1244�174�34�4

x2 � �6 � 7�0� � �6

x1 � �4 � 5�0� � �4

x2 � �6 � 7x1.

x1 � �4 � 5x2

�x1, x2� � �0, 0�,

 7x1 �  x2 �  6,

 x1 �  5x2 �  �4

�0.423�0.423�0.422�0.429�0.508

�0.200
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For this particular system of linear equations you can determine that the actual solution
is  and So you can see from Table 10.3 that the approximations given by
the Jacobi method become progressively worse instead of better, and you can conclude that
the method diverges.

The problem of divergence in Example 3 is not resolved by using the Gauss-Seidel
method rather than the Jacobi method. In fact, for this particular system the Gauss-Seidel
method diverges more rapidly, as shown in Table 10.4.

TABLE 10.4

n 0 1 2 3 4 5

x1 0

x2 0

With an initial approximation of neither the Jacobi method nor the
Gauss-Seidel method converges to the solution of the system of linear equations given in
Example 3. You will now look at a special type of coefficient matrix A, called a strictly 
diagonally dominant matrix, for which it is guaranteed that both methods will converge.

E X A M P L E  4 Strictly Diagonally Dominant Matrices

Which of the following systems of linear equations has a strictly diagonally dominant 
coefficient matrix?

(a)

(b)

 3x1 �  5x2 �  x3 �  3

 x1    �  2x3 �  �4

 4x1 �  2x2 �  x3 �  �1

 2x1 �  5x2 �  2

 3x1 �  x2 �  �4

(x1, x2) � (0, 0),

�52,521,874�1,500,624�42,874�1224�34

�7,503,124�214,374�6124�174�4

x2 � 1.x1 � 1
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Definition of Strictly
Diagonally Dominant
Matrix

An matrix A is strictly diagonally dominant if the absolute value of each entry
on the main diagonal is greater than the sum of the absolute values of the other entries
in the same row. That is,

�ann� > �an1� � �an2� � . . . � �an,n�1�.
.
.
.

�a22� > �a21� � �a23� � . . . � �a2n�
�a11� > �a12� � �a13� � . . . � �a1n�

n � n
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Theorem 10.1
Convergence of
the Jacobi and
Gauss-Seidel Methods

If A is strictly diagonally dominant, then the system of linear equations given by 
has a unique solution to which the Jacobi method and the Gauss-Seidel method will con-
verge for any initial approximation.

Ax � b

Solution (a) The coefficient matrix

is strictly diagonally dominant because and 
(b) The coefficient matrix

is not strictly diagonally dominant because the entries in the second and third rows 
do not conform to the definition. For instance, in the second row 

and it is not true that Interchanging the second and third
rows in the original system of linear equations, however, produces the coefficient matrix

and this matrix is strictly diagonally dominant.

The following theorem, which is listed without proof, states that strict diagonal domi-
nance is sufficient for the convergence of either the Jacobi method or the Gauss-Seidel
method.

In Example 3 you looked at a system of linear equations for which the Jacobi and Gauss-
Seidel methods diverged. In the following example you can see that by interchanging the
rows of the system given in Example 3, you can obtain a coefficient matrix that is strictly
diagonally dominant. After this interchange, convergence is assured.

E X A M P L E  5 Interchanging Rows to Obtain Convergence

Interchange the rows of the system

to obtain one with a strictly diagonally dominant coefficient matrix. Then apply the Gauss-
Seidel method to approximate the solution to four significant digits.

 7x1 �  x2 �  6

 x1 �  5x2 �  �4

A� � �
4

3

1

2

�5

0

�1

1

2
�,

�a22� > �a21� � �a23�.a23 � 2,
a22 � 0,a21 � 1,

A � �
4

1

3

2

0

�5

�1

2

1
�

�5�  > �2�.�3� > ��1�

A � �3

2

�1

5�



Solution Begin by interchanging the two rows of the given system to obtain

Note that the coefficient matrix of this system is strictly diagonally dominant. Then solve
for and as follows.

Using the initial approximation you can obtain the sequence of approxi-
mations shown in Table 10.5.

TABLE 10.5

n 0 1 2 3 4 5

x1 0.0000 0.8571 0.9959 0.9999 1.000 1.000

x2 0.0000 0.9714 0.9992 1.000 1.000 1.000

So you can conclude that the solution is and 

Do not conclude from Theorem 10.1 that strict diagonal dominance is a necessary con-
dition for convergence of the Jacobi or Gauss-Seidel methods. For instance, the coefficient
matrix of the system

is not a strictly diagonally dominant matrix, and yet both methods converge to the solution
and when you use an initial approximation of (See 

Exercises 21–22.)
�x1, x2� � �0, 0�.x2 � 1x1 � 1

 x1 �  2x2 � 3

 �4x1 �  5x2 � 1

x2 � 1.x1 � 1

(x1, x2) � (0, 0),

x2 �
4
5 �

1
5x1

x1 �
6
7 �

1
7x2

x2x1

 x1 �  5x2 �  �4.

 7x1 �  x2 �  6
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In Exercises 1– 4, apply the Jacobi method to the given system of
linear equations, using the initial approximation 
(0, 0, . . . , 0). Continue performing iterations until two successive
approximations are identical when rounded to three significant digits.

1. 2.

3. 4.

5. Apply the Gauss-Seidel method to Exercise 1.

6. Apply the Gauss-Seidel method to Exercise 2.

7. Apply the Gauss-Seidel method to Exercise 3.

8. Apply the Gauss-Seidel method to Exercise 4.

In Exercises 9–12, show that the Gauss-Seidel method diverges for
the given system using the initial approximation 

9. 10.

11. 12.

In Exercises 13–16, determine whether the matrix is strictly diago-
nally dominant.

13. 14.

15. 16.

17. Interchange the rows of the system of linear equations in
Exercise 9 to obtain a system with a strictly diagonally domi-
nant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

18. Interchange the rows of the system of linear equations in
Exercise 10 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

�
7

1

0

5

�4

2

�1

1

�3
��

12

2

0

6

�3

6

0

2

13
�

��1

0

�2

1��2

3

1

5�

   x2 �  2x3 � 1 3x1      �  x3 �  13

 3x1 �  x2    � 5 x1 �  3x2 �  10x3 �  9

 x1 �  3x2 �  x3 � 5 2x1 �  3x2    �  �7

 3x1 � 2x2 � 2 2x1 �  x2 �  3

 �x1 � 4x2 � 1 x1 �  2x2 �  �1

�0, 0, . . . , 0�.
�x1, x2, . . . , xn� �

 3x1    �  4x3 �  11 �x1 �  x2 �  3x3 �  �6

 x1 �  7x2 �  2x3 �  �2 x1 �  3x2 �  x3 �  �2

 4x1 �  x2 �  x3 �  7 2x1 �  x2    �  2

 3x1 �  5x2 �  1 x1 �  4x2 � 5

 �4x1 �  2x2 �  �6 3x1 �  x2 � 2

�x1, x2, . . . , xn� �
19. Interchange the rows of the system of linear equations in

Exercise 11 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

20. Interchange the rows of the system of linear equations in
Exercise 12 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

In Exercises 21 and 22, the coefficient matrix of the system of linear
equations is not strictly diagonally dominant. Show that the Jacobi
and Gauss-Seidel methods converge using an initial approximation
of 

21. 22.

In Exercises 23 and 24, write a computer program that applies the
Gauss-Siedel method to solve the system of linear equations.

23.

24. 4x1

�x1

�

�

x2

4x2

�x2

�

�

�

x3

x3

4x3

�x3

�

�

�

x4

x4

4x4

�x4

�

�

�

x5

x5

4x5

�x5

�

�

�

x6

x6

4x6

�x6

�

�

�

x7

x7

4x7

�x7

�

�

�

x8

x8

4x8

�

�

�

�

�

�

�

�

18

18

4

4

26

16

10

32

4x1

x1

�

�

x2

6x2

x2

2x2

�

�

�

x3

2x3

5x3

�x3

�x3

�

�

�

x4

5x4

x4

�x4

�x4

�

�

�

�

�

�

x5

x5

x5

6x5

x5

x5

�

�

�

x6

x6

5x6

�

�

�

x7

4x7

x7

�

�

�

�

x8

x8

x8

5x8

�

�

�

�

�

�

�

�

3

�6

�5

0

12

�12

�2

2

 3x1 �  x2 �  4x3 � 5

 x1 �  3x2 �  x3 � 7 x1 � 2x2 � 3

 4x1 �  2x2 �  2x3 � 0 �4x1 � 5x2 � 1

�x1, x2, . . . , xn� � �0, 0, . . . , 0�.
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10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
In Chapter 7 you saw that the eigenvalues of an matrix A are obtained by solving its
characteristic equation

For large values of n, polynomial equations like this one are difficult and time-consuming
to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section you will look at an alterna-
tive method for approximating eigenvalues. As presented here, the method can be used only
to find the eigenvalue of A that is largest in absolute value—this eigenvalue is called the 
dominant eigenvalue of A. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Not every matrix has a dominant eigenvalue. For instance, the matrix

with eigenvalues of and has no dominant eigenvalue. Similarly, the
matrix

with eigenvalues of and has no dominant eigenvalue.

E X A M P L E  1 Finding a Dominant Eigenvalue

Find the dominant eigenvalue and corresponding eigenvectors of the matrix

Solution From Example 4 of Section 7.1 you know that the characteristic polynomial of A is
So the eigenvalues of A are and of

which the dominant one is From the same example you know that the dominant
eigenvectors of A those corresponding to are of the form

t � 0.x � t�3

1�,

�2 � �2��
�2 � �2.

�2 � �2,�1 � �1�2 � 3� � 2 � �� � 1��� � 2�.

A � �2

1

�12

�5�.

�3 � 1��1 � 2, �2 � 2,�

A � �
2

0

0

0

2

0

0

0

1
�

�2 � �1��1 � 1�

A � �1

0

0

�1�

�n � cn�1�
n�1 � cn�2�

n�2 � . . . � c0 � 0.

n � n
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Definition of Dominant
Eigenvalue and
Dominant Eigenvector

Let and be the eigenvalues of an matrix A. is called the
dominant eigenvalue of A if

The eigenvectors corresponding to are called dominant eigenvectors of A.�1

i � 2, . . . , n.��1� > ��i�,

�1n � n�n�1, �2, . . . ,



The Power Method
Like the Jacobi and Gauss-Seidel methods, the power method for approximating eigenval-
ues is iterative. First assume that the matrix A has a dominant eigenvalue with correspond-
ing dominant eigenvectors. Then choose an initial approximation of one of the dominant
eigenvectors of A. This initial approximation must be a nonzero vector in Finally, form
the sequence given by

For large powers of k, and by properly scaling this sequence, you will see that you obtain
a good approximation of the dominant eigenvector of A. This procedure is illustrated in
Example 2.

E X A M P L E  2 Approximating a Dominant Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of

Solution Begin with an initial nonzero approximation of

Then obtain the following approximations.

Iteration “Scaled” Approximation

190�2.99

1.00�x6 � Ax5 � �2

1

�12

�5��
�280

�94� � �568

190�

�94�2.98

1.00�x5 � Ax4 � �2

1

�12

�5��
136

46� � ��280

�94�

46�2.96

1.00�x4 � Ax3 � �2

1

�12

�5��
�64

�22� � �136

46�

�22�2.91

1.00�x3 � Ax2 � �2

1

�12

�5��
28

10� � ��64

�22�

10�2.80

1.00�x2 � Ax1 � �2

1

�12

�5��
�10

�4� � �28

10�

�4�2.50

1.00�x1 � Ax0 � �2

1

�12

�5��
1

1� � ��10

�4�

x0 � �1

1�.

A � �2

1

�12

�5�.

 xk � Axk�1 � A(Ak�1x0) � Akx0.

.

.

.

 x3 � Ax2 � A(A2x0) � A3x0

 x2 � Ax1 � A(Ax0) � A2x0

 x1 � Ax0

Rn.
x0
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Note that the approximations in Example 2 appear to be approaching scalar multiples of

which you know from Example 1 is a dominant eigenvector of the matrix

In Example 2 the power method was used to approximate a dominant eigenvector of the
matrix A. In that example you already knew that the dominant eigenvalue of A was

For the sake of demonstration, however, assume that you do not know the domi-
nant eigenvalue of A. The following theorem provides a formula for determining the eigen-
value corresponding to a given eigenvector. This theorem is credited to the English physi-
cist John William Rayleigh (1842–1919).

Proof Because x is an eigenvector of A, you know that and can write

In cases for which the power method generates a good approximation of a dominant
eigenvector, the Rayleigh quotient provides a correspondingly good approximation of the
dominant eigenvalue. The use of the Rayleigh quotient is demonstrated in Example 3.

E X A M P L E  3 Approximating a Dominant Eigenvalue

Use the result of Example 2 to approximate the dominant eigenvalue of the matrix

Solution After the sixth iteration of the power method in Example 2, obtained

With as the approximation of a dominant eigenvector of A, use the Rayleigh
quotient to obtain an approximation of the dominant eigenvalue of A. First compute the
product Ax.

x � �2.99, 1�

x6 � �568

190� � 190�2.99

1.00� .

A � �2

1

�12

�5� .

Ax � x
x � x

�
�x � x
x � x

�
��x � x�

x � x
� �.

Ax � �x

� � �2.

A � �2

1

�12

�5�.

�3

1�,
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Theorem 10.2
Determining an Eigenvalue
from an Eigenvector

If x is an eigenvector of a matrix A, then its corresponding eigenvalue is given by

This quotient is called the Rayleigh quotient.

� �
Ax � x
x � x

.



Then, because

and

you can compute the Rayleigh quotient to be

which is a good approximation of the dominant eigenvalue 

From Example 2 you can see that the power method tends to produce approximations
with large entries. In practice it is best to “scale down” each approximation before pro-
ceeding to the next iteration. One way to accomplish this scaling is to determine the com-
ponent of that has the largest absolute value and multiply the vector by the
reciprocal of this component. The resulting vector will then have components whose
absolute values are less than or equal to 1. (Other scaling techniques are possible. For
examples, see Exercises 27 and 28.)

E X A M P L E 4 The Power Method with Scaling

Calculate seven iterations of the power method with scaling to approximate a dominant
eigenvector of the matrix

Use as the initial approximation.

Solution One iteration of the power method produces

and by scaling you obtain the approximation

x1 �
1
5�

3

1

5
� � �

0.60

0.20

1.00
�.

Ax0 � �
1

�2

1

2

1

3

0

2

1
� �

1

1

1
� � �

3

1

5
�,

x0 � �1, 1, 1�

A � �
1

�2

1

2

1

3

0

2

1
�.

AxiAxi

� � �2.

� �
Ax � x
x � x

�
�20.0
9.94

� �2.01

x � x � �2.99��2.99� � �1��1� � 9.94,

Ax � x � ��6.02��2.99� � ��2.01��1� � �20.0

Ax � �2

1

�12

�5� �2.99

1.00� � ��6.02

�2.01�
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A second iteration yields

and

Continuing this process, you obtain the sequence of approximations shown in Table 10.6.

TABLE 10.6

x0 x1 x2 x3 x4 x5 x6 x7

From Table 10.6 you can approximate a dominant eigenvector of A to be

Using the Rayleigh quotient, you can approximate the dominant eigenvalue of A to be
(For this example you can check that the approximations of x and � are exact.)

R E M A R K : Note that the scaling factors used to obtain the vectors in Table 10.6,

x1 x2 x3 x4 x5 x6 x7

↓ ↓ ↓ ↓ ↓ ↓ ↓

5.00 2.20 2.82 3.13 3.02 2.99 3.00,

are approaching the dominant eigenvalue 

In Example 4 the power method with scaling converges to a dominant eigenvector. The
following theorem states that a sufficient condition for convergence of the power method is
that the matrix A be diagonalizable (and have a dominant eigenvalue).

� � 3.

� � 3.

x � �
0.50

0.50

1.00
�.

�
0.50

0.50

1.00
��

0.50

0.50

1.00
��

0.50

0.49

1.00
��

0.51

0.51

1.00
��

0.48

0.55

1.00
��

0.45

0.45

1.00
��

0.60

0.20

1.00
��

1.00

1.00

1.00
�

�
0.45

0.45

1.00
�.x2 �

1

2.20�
1.00

1.00

2.20
� �

Ax1 � �
1

�2

1

2

1

3

0

2

1
� �

0.60

0.20

1.00
� � �

1.00

1.00

2.20
�
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Theorem 10.3
Convergence of the
Power Method

If A is an diagonalizable matrix with a dominant eigenvalue, then there exists a
nonzero vector such that the sequence of vectors given by

. . . , . . .

approaches a multiple of the dominant eigenvector of A.

Akx0,A4x0,A3x0,A2x0,Ax0,

x0

n � n



Proof Because A is diagonalizable, you know from Theorem 7.5 that it has n linearly independent
eigenvectors with corresponding eigenvalues of Assume that
these eigenvalues are ordered so that is the dominant eigenvalue (with a corresponding
eigenvector of x1). Because the n eigenvectors are linearly independent, they
must form a basis for For the initial approximation choose a nonzero vector such
that the linear combination

has nonzero leading coefficients. (If the power method may not converge, and a 
different must be used as the initial approximation. See Exercises 21 and 22.) Now,
multiplying both sides of this equation by A produces

Repeated multiplication of both sides of this equation by A produces

which implies that

Now, from the original assumption that is larger in absolute value than the other eigen-
values it follows that each of the fractions

. . . ,

is less than 1 in absolute value. So each of the factors

. . . ,

must approach 0 as k approaches infinity. This implies that the approximation

improves as k increases. Because is a dominant eigenvector, it follows that any scalar
multiple of is also a dominant eigenvector, so showing that approaches a multiple
of the dominant eigenvector of A.

The proof of Theorem 10.3 provides some insight into the rate of convergence of the
power method. That is, if the eigenvalues of A are ordered so that

��1� > ��2� ≥ ��3� ≥ .  .  . ≥ ��n�,

Akx0x1

x1

c1 � 0Akx0 � �1
kc1x1,

��n

�1
�k��3

�1
�

k

,��2

�1
�k

,

�n

�1

�3

�1

,
�2

�1

,

�1

Akx0 � �1
k�c1x1 � c2��2

�1
�
k

 x2 � . . . � cn��n

�1
�
k

 xn�.

Akx0 � c1��1
kx1� � c2��2

kx2� � . . . � cn��n
kxn�,

 � c1��1x1� � c2��2x2� � . . . � cn��nxn�.

 � c1�Ax1� � c2�Ax2� � . . . � cn�Axn�
 Ax0 � A�c1x1 � c2x2 � . . . � cnxn�

x0

c1 � 0,

x0 � c1x1 � c2x2 � . . . � cnxn

x0,Rn.
x1, x2, . . . , xn

�1

�1, �2, . . . , �n.x1, x2, . . . , xn
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then the power method will converge quickly if is small, and slowly if 
is close to 1. This principle is illustrated in Example 5.

E X A M P L E  5 The Rate of Convergence of the Power Method

(a) The matrix

has eigenvalues of and So the ratio is 0.1. For this matrix,
only four iterations are required to obtain successive approximations that agree when
rounded to three significant digits. (See Table 10.7.)

TABLE 10.7

x0 x1 x2 x3 x4

(b) The matrix

has eigenvalues of and For this matrix, the ratio is 0.9,
and the power method does not produce successive approximations that agree to three
significant digits until sixty-eight iterations have been performed, as shown in Table 10.8.

TABLE 10.8

x0 x1 x2 x66 x67 x68

In this section you have seen the use of the power method to approximate the dominant
eigenvalue of a matrix. This method can be modified to approximate other eigenvalues
through use of a procedure called deflation. Moreover, the power method is only one of
several techniques that can be used to approximate the eigenvalues of a matrix. Another
popular method is called the QR algorithm.

This is the method used in most computer programs and calculators for finding eigen-
values and eigenvectors. The algorithm uses the QR–factorization of the matrix, as pre-
sented in Chapter 5. Discussions of the deflation method and the QR algorithm can be
found in most texts on numerical methods.

�0.714

1.000��0.714

1.000��0.715

1.000��0.941

1.000��0.500

1.000��1.000

1.000�

��2�	��1��2 � �9.�1 � 10

A � ��4

7

10

5�

�0.833

1.000��0.833

1.000��0.835

1.000��0.818

1.000��1.000

1.000�

��2�	��1��2 � �1.�1 � 10

A � �4

6

5

5�

��2�	��1�
��2�	��1�
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In Exercises 1–6, use the techniques presented in Chapter 7 to find
the eigenvalues of the matrix A. If A has a dominant eigenvalue, find
a corresponding dominant eigenvector.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, use the Rayleigh quotient to compute the eigen-
value of A corresponding to the eigenvector x.

7. 8.

9.

10.

In Exercises 11–14, use the power method with scaling to approxi-
mate a dominant eigenvector of the matrix A. Start with  
and calculate five iterations. Then use to approximate the domi-
nant eigenvalue of A.

11. 12.

13. 14.

In Exercises 15–18, use the power method with scaling to approxi-
mate a dominant eigenvector of the matrix A. Start with

and calculate four iterations. Then use to approxi-
mate the dominant eigenvalue of A.

15. 16.

17. 18. A � �
0

0

2

6

�4

1

0

0

1
�A � �

�1

2

1

�6

7

2

0

0

�1
�

A � �
1

0

0

2

�7

0

0

1

0
�A � �

3

1

0

0

�1

2

0

0

8
�

x4x0 � �1, 1, 1�

A � � 6

�2

�3

1�A � � 1

�2

�4

8�

A � ��1

1

0

6�A � �2

0

1

�7�

x5

x0 � �1, 1�

A � �
3

�3

�1

2

�4

�2

�3

9

5
�, x � �

3

0

1
�

A � �
1

�2

�6

2

5

6

�2

�2

�3
�, x � �

1

1

3
�

A � �2

1

3

4�, x � ��3

1�A � �4

2

�5

�3�, x � �5

2�
�

A � �
�5

3

4

0

7

�2

0

0

3
�A � �

2

0

0

3

�1

0

1

2

3
�

A � �4

2

�5

�3�A � � 1

�3

�5

�1�

A � ��3

1

0

3�A � �2

0

1

�4�

In Exercises 19 and 20, the matrix A does not have a dominant
eigenvalue. Apply the power method with scaling, starting with

and observe the results of the first four iterations.

19. 20.

21. Writing (a) Find the eigenvalues and corresponding eigen-
vectors of

(b) Calculate two iterations of the power method with scaling,
starting with 

(c) Explain why the method does not seem to converge to a
dominant eigenvector.

22. Writing Repeat Exercise 21 using for the
matrix

23. The matrix

has a dominant eigenvalue of Observe that 
implies that

Apply five iterations of the power method (with scaling) on
to compute the eigenvalue of A with the smallest magni-

tude.

24. Repeat Exercise 23 for the matrix

A � �
2

0

0

3

�1

0

1

2

3
�.

A�1

A�1x �
1

�
 x.

Ax � �x� � �2.

A � �2
1

�12
�5�

A � �
�3

0

0

0

�1

1

2

0

�2
�.

x0 � �1, 1, 1�,

x0 � �1, 1�.

A � � 3

�2

�1

4�.

A � �
1

�2

�6

2

5

6

�2

�2

�3
�A � �

1

3

0

1

�1

0

0

0

�2
�

x0 � �1, 1, 1�,
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25. (a) Compute the eigenvalues of

(b) Apply four iterations of the power method with scaling to
each matrix in part (a), starting with 

25. (c) Compute the ratios for A and B. For which do you
expect faster convergence?

26. Use the proof of Theorem 10.3 to show that

for large values of k. That is, show that the scale factors ob-
tained in the power method approach the dominant eigenvalue.

A�Akx0�  � �1�Akx0�

�2 	�1

x0 � ��1, 2�.

A � �2

1

1

2�   and   B � �2

1

3

4�.

In Exercises 27 and 28, apply four iterations of the power method
(with scaling) to approximate the dominant eigenvalue of the
matrix. After each iteration, scale the approximation by dividing by
its length so that the resulting approximation will be a unit vector.

27. 28. A � �
7

16

8

�4

�9

�4

2

6

5
�A � �5

4

6

3�
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10.4 APPLICATIONS OF NUMERICAL METHODS

Applications of Gaussian Elimination with Pivoting
In Section 2.5 you used least squares regression analysis to find linear mathematical models
that best fit a set of n points in the plane. This procedure can be extended to cover polyno-
mial models of any degree as follows.

Note that if this system of equations reduces to

 �� xi�a0 � �� xi
2�a1 � � xiyi ,

 na0 � 2�� xi�a1 � � yi

m � 1

Regression Analysis
for Polynomials

The least squares regression polynomial of degree m for the points 
is given by

where the coefficients are determined by the following system of linear equa-
tions.

 ��xi
m�a0 �  ��xi

m�1�a1 �  ��xi
m�2�a2 � .  .  . �  ��xi

2m�am � �xi
myi

.

.

.

 ��xi
2�a0 �  ��xi

3�a1 �  ��xi
4�a2 � .  .  . �  ��xi

m�2�am � �xi
2yi

 ��xi�a0 �  ��xi
2�a1 �  ��xi

3�a2 � .  .  . �  ��xi
m�1�am � �xiyi

 na0 �  ��xi�a1 �  ��xi
2�a2 � .  .  . �  ��xi

m�am � �yi

m � 1

y � amxm � am�1x
m�1 � . . . � a2x

2 � a1x � a0,

.  .  . , �xn, yn��
��x1, y1�, �x2, y2�,



which has a solution of

and

Exercise 16 asks you to show that this formula is equivalent to the matrix formula for linear
regression that was presented in Section 2.5.

Example 1 illustrates the use of regression analysis to find a second-degree polynomial
model.

E X A M P L E  1 Least Squares Regression Analysis

The world population in billions for the years between 1965 and 2000, is shown in Table
10.9. (Source: U.S. Census Bureau)

TABLE 10.9

Year 1965 1970 1975 1980 1985 1990 1995 2000

Population 3.36 3.72 4.10 4.46 4.86 5.28 5.69 6.08

Find the second-degree least squares regression polynomial for these data and use the 
resulting model to predict the world population for 2005 and 2010.

Solution Begin by letting represent 1965, represent 1970, and so on. So the 
collection of points is given by 

which yields

So the system of linear equations giving the coefficients of the quadratic model
is

Gaussian elimination with pivoting on the matrix

�
8

�4

44

�4

44

�64

44

�64

452

37.55

�2.36

190.86
�

 44a0 �  64a1 �  452a2 �  190.86.

 �4a0 �  44a1 �  64a2 �  �2.36

 8a0 �  4a1 �  44a2 �  37.55

y � a2x
2 � a1x � a0

�
8

i�1

xi
2yi � 190.86.�

8

i�1

xi yi � �2.36,�
8

i�1

yi � 37.55,�
8

i�1

 xi
4 � 452,

�
8

i�1

xi
3 � �64,�

8

i�1

 xi
2 � 44,�

8

i�1

 xi � �4,n � 8,

�1, 5.28�, �2, 5.69�, �3, 6.08��,
���4, 3.36�, ��3, 3.72�, ��2, 4.10�, ��1, 4.46�, �0, 4.86�,

x � �3x � �4

a0 �
� yi

n
� a1

� xi

n
.a1 �

n�xiyi � �� xi��� yi�
n� xi

2 � �� xi�2
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produces

So by back substitution you find the solution to be 

and the regression quadratic is

Figure 10.1 compares this model with the given points. To predict the world population for
2005, let obtaining

Similarly, the prediction for 2010 is

E X A M P L E  2 Least Squares Regression Analysis

Find the third-degree least squares regression polynomial

for the points

Solution For this set of points the linear system

becomes

 441a0 �  2275a1 �  12,201a2 �  67,171a3 �  1258.

 91a0 �  441a1 �  2275a2 �  12,201a3 �  242

 21a0 �  91a1 �  441a1 �  2275a3 �  52

 7a0 �  21a1 �  91a2 �  441a3 �  14

 ��xi
3�a0 �  ��xi

4�a1 �  ��xi
5�a2 � ��xi

6�a3 � �xi
3yi

 ��xi
2�a0 �  ��xi

3�a1 �  ��xi
4�a2 � ��xi

5�a3 � �xi
2yi

 ��xi�a0 �  ��xi
2�a1 �  ��xi

3�a2 � ��xi
4�a3 � �xiyi

 na0 �  ��xi�a1 �  ��xi
2�a2 � ��xi

3�a3 � �yi

��0, 0�, �1, 2�, �2, 3�, �3, 2�, �4, 1�, �5, 2�, �6, 4��.

y � a3x
3 � a2x

2 � a1x � a0

y � 0.0045�52� � 0.3953�5� � 4.8667 � 6.96 billion.

�x � 5�

y � 0.0045�42� � 0.3953�4� � 4.8667 � 6.52 billion.

x � 4,

y � 0.0045x2 � 0.3953x � 4.8667.

a2 � 0.0045,   a1 � 0.3953,   a0 � 4.8667,

�
1

0

0

�1.4545

�1.4545

�0.4545

10.2727

�0.6000

�1.6000

4.3377

0.3926

0.0045
�.
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Figure 10.1
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Using Gaussian elimination with pivoting on the matrix

produces

which implies that

So the cubic model is 

Figure 10.2 compares this model with the given points.

Applications of the Gauss-Seidel Method

E X A M P L E  3 An Application to Probability

Figure 10.3 is a diagram of a maze used in a laboratory experiment. The experiment begins
by placing a mouse at one of the ten interior intersections of the maze. Once the mouse
emerges in the outer corridor, it cannot return to the maze. When the mouse is at an interior
intersection, its choice of paths is assumed to be random. What is the probability that the
mouse will emerge in the “food corridor” when it begins at the ith intersection?

Solution Let the probability of winning (getting food) by starting at the ith intersection be repre-
sented by Then form a linear equation involving and the probabilities associated with
the intersections bordering the ith intersection. For instance, at the first intersection the
mouse has a probability of of choosing the upper right path and losing, a probability of 
of choosing the upper left path and losing, a probability of of choosing the lower right-
path (at which point it has a probability of of winning), and a probability of of choos-
ing the lower left path (at which point it has a probability of of winning). So

Upper Upper Lower Lower
right left left right

p1 �
1
4�0� �

1
4�0� �

1
4 p2 �

1
4 p3.

p2

1
4p3

1
4

1
4

1
4

pipi.

y � 0.1667x3 � 1.5000x2 � 3.6905x � 0.0714.

a3 � 0.1667,    a2 � �1.5000,    a1 � 3.6905,     a0 � �0.0714.

�
1.0000

0.0000

0.0000

0.0000

5.1587

1.0000

0.0000

0.0000

27.6667

8.5312

1.0000

0.0000

152.3150

58.3482

9.7714

1.0000

2.8526

0.6183

0.1286

0.1667
�,

�
7

21

91

441

21

91

441

2275

91

441

2275

12,201

441

2275

12,201

67,171

14

52

242

1258
�
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Using similar reasoning, the other nine probabilities can be represented by the following
equations.

Rewriting these equations in standard form produces the following system of ten linear
equations in ten variables.

0

0

0

0

0

0

1

1

1

1

The augmented matrix for this system is

4 �1 �1 0 0 0 0 0 0 0 0

�1 5 �1 �1 �1 0 0 0 0 0 0

�1 �1 5 0 �1 �1 0 0 0 0 0

0 �1 0 5 �1 0 �1 �1 0 0 0

0 �1 �1 �1 6 �1 0 �1 �1 0 0

0 0 �1 0 �1 5 0 0 �1 �1 0
.

0 0 0 �1 0 0 4 �1 0 0 1

0 0 0 �1 �1 0 �1 5 �1 0 1

0 0 0 0 �1 �1 0 �1 5 �1 1

0 0 0 0 0 �1 0 0 �1 4 1

                   �  p6          �  p9 �  4p10 �

               �  p5 �  p6      �  p8 �  5p9 �  p10 �

           �  p4 �  p5      �  p7 �  5p8 �  p9      �

           �  p4          �  4p7 �  p8          �

       �  p3      �  p5 �  5p6          �  p9 �  p10 �

   �  p2 �  p3 �  p4 �  6p5 �  p6      �  p8 �  p9      �

   �  p2      �  5p4 �  p5      �  p7 �  p8          �

 �p1 �  p2 �  5p3      �  p5 �  p6                  �

 �p1 �  5p2 �  p3 �  p4 �  p5                      �

 4p1 �  p2 �  p3                              �

 p10 �
1
4�0� �

1
4�1� �

1
4p6 �

1
4p9

 p9 �
1
5�1� �

1
5p5� �

1
5p6 �

1
5p8 �

1
5p10

 p8 �
1
5�1� �

1
5p4� �

1
5p5 �

1
5p7 �

1
5p9

 p7 �
1
4�0� �

1
4�1� �

1
4 p4 �

1
4 p8

 p6 �
1
5�0� �

1
5p3� �

1
5p5 �

1
5p9 �

1
5p10

 p5 �
1
6p2� �

1
6p3� �

1
6p4 �

1
6p6 �

1
6p81

�
1
6p9

 p4 �
1
5�0� �

1
5p2� �

1
5p5 �

1
5p7 �

1
5p8

 p3 �
1
5�0� �

1
5p1� �

1
5p2 �

1
5p5 �

1
5p6

 p2 �
1
5�0� �

1
5p1� �

1
5p3 �

1
5p4 �

1
5p5
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Using the Gauss-Seidel method with an initial approximation of 
produces (after 18 iterations) an approximation of

The structure of the probability problem described in Example 3 is related to a technique
called finite element analysis, which is used in many engineering problems.

Note that the matrix developed in Example 3 has mostly zero entries. Such matrices are
called sparse. For solving systems of equations with sparse coefficient matrices, the Jacobi
and Gauss-Seidel methods are much more efficient than Gaussian elimination.

Applications of the Power Method
Section 7.4 introduced the idea of an age transition matrix as a model for population
growth. Recall that this model was developed by grouping the population into n age classes
of equal duration. So for a maximum life span of L years, the age classes are given by the
following intervals.

First age Second age nth age
class class class

.  .  .  . ,

The number of population members in each age class is then represented by the age distri-
bution vector

.

Over a period of years, the probability that a member of the ith age class will survive
to become a member of the th age class is given by where 2,

The average number of offspring produced by a member of the ith age class
is given by where 2, These numbers can be written in matrix
form as follows.

A � �  

b1

p1

0
...
0

b2

0

p2
...
0

b3

0

0
...
0

. . .

. . .

. . .

. . .

bn�1

0

0
...

pn�1

bn

0

0
...
0
�

.  .  . , n.i � 1,0 ≤ bi,bi,
.  .  . , n � 1.

i � 1,0 ≤ pi ≤ 1,pi,�i � 1�
L�n

x � �
x1

x2
...

xn

�

��n � l�L
n

, L��L
n

, 
2L
n 	,�0, 

L
n	,

p10 � 0.455.p9 � 0.522,

p8 � 0.522p7 � 0.455,

p6 � 0.298p5 � 0.333,

p4 � 0.298p3 � 0.180,

p2 � 0.180p1 � 0.090,

p1 � p2 � . . . � p10 � 0
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Multiplying this age transition matrix by the age distribution vector for a given period of
time produces the age distribution vector for the next period of time. That is,

In Section 7.4 you saw that the growth pattern for a population is stable if the same per-
centage of the total population is in each age class each year. That is,

For populations with many age classes, the solution to this eigenvalue problem can be found
with the power method, as illustrated in Example 4.

E X A M P L E  4 A Population Growth Model

Assume that a population of human females has the following characteristics.

Average Number of Probability of
Age Class Female Children Surviving to
(in years) During Ten-Year Period Next Age Class

0.000 0.985
0.174 0.996

0.782 0.994

0.263 0.990

0.022 0.975

0.000 0.940

0.000 0.866

0.000 0.680

0.000 0.361

0.000 0.000

Find a stable age distribution for this population.

Solution The age transition matrix for this population is

A �

 90 ≤ age <  100

 80 ≤ age <  90

 70 ≤ age <  80

 60 ≤ age <  70

 50 ≤ age <  60

 40 ≤ age <  50

 30 ≤ age <  40

 20 ≤ age <  30

 10 ≤ age <  20
 0 ≤ age <  10

Axi � xi�1 � �xi.

Axi � xi�1.
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0.000 0.174 0.782 0.263 0.022 0.000 0.000 0.000 0.000 0.000
0.985 0 0 0 0 0 0 0 0 0

0 0.996 0 0 0 0 0 0 0 0
0 0 0.994 0 0 0 0 0 0 0
0 0 0 0.990 0 0 0 0 0 0 .
0 0 0 0 0.975 0 0 0 0 0
0 0 0 0 0 0.940 0 0 0 0
0 0 0 0 0 0 0.866 0 0 0
0 0 0 0 0 0 0 0.680 0 0
0 0 0 0 0 0 0 0 0.361 0



To apply the power method with scaling to find an eigenvector for this matrix, use an 
initial approximation of The following is an approximation
for an eigenvector of A, with the percentage of each age in the total population.

Percentage in
Eigenvector Age Class Age Class

1.000 15.27

0.925 14.13

0.864 13.20

0.806 12.31

0.749 11.44

0.686 10.48

0.605 19.24

0.492 17.51

0.314 14.80

0.106 11.62

The eigenvalue corresponding to the eigenvector x in Example 4 is That is,

This means that the population in Example 4 increases by 6.5% every ten years.

R E M A R K : Should you try duplicating the results of Example 4, you would notice that
the convergence of the power method for this problem is very slow. The reason is that the
dominant eigenvalue of is only slightly larger in absolute value than the next
largest eigenvalue.

� 
 1.065

1.000
0.925
0.864
0.806
0.749
0.686
0.605
0.492
0.314
0.106

   
    

1.065
0.985
0.921
0.859
0.798
0.731
0.645
0.524
0.334
0.113

   
 1.065   

1.000
0.925
0.864
0.806
0.749
0.686
0.605
0.492
0.314
0.106

   .Ax � A

� 
 1.065.

 90 ≤ age <  100

 80 ≤ age <  90

 70 ≤ age <  80

 60 ≤ age <  70

 50 ≤ age <  60

 40 ≤ age <  50x �

 30 ≤ age <  40

 20 ≤ age <  30

 10 ≤ age <  20

 0 ≤ age <  10

x0 � �1, 1, 1, 1, 1, 1, 1, 1, 1, 1�.
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Applications of Gaussian Elimination with Pivoting

In Exercises 1–4, find the second-degree least squares regression
polynomial for the given data. Then graphically compare the model
to the given points.

1.

2.

3.

4.

In Exercises 5–8, find the third-degree least squares regression
polynomial for the given data. Then graphically compare the model
to the given points.

5.

6.

7.

8.

9. Find the second-degree least squares regression polynomial
for the points

Then use the results to approximate Compare the
approximation with the exact value.

10. Find the third-degree least squares regression polynomial for
the points

Then use the result to approximate Compare the 
approximation with the exact value.

11. The number of minutes a scuba diver can stay at a particular
depth without acquiring decompression sickness is shown in
the table. (Source: United States Navy’s Standard Air Decom-
pression Tables)

Depth (in feet) 35 40 50 60 70

Time (in minutes) 310 200 100 60 50

Depth (in feet) 80 90 100 110

Time (in minutes) 40 30 25 20

tan ���6�.

��

4
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, �1	,

cos ���4�.

��
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, 0	.��

3
, 

1
2	,�0, 1�,���

3
, 

1
2	,���

2
, 0	,

��7, 2�, ��3, 0�, �1, �1�, �2, 3�, �4, 6�
��3, 4�, ��1, 1�, �0, 0�, �1, 2�, �2, 5�
�1, 1�, �2, 4�, �3, 4�, �5, 1�, �6, 2�
�0, 0�, �1, 2�, �2, 4�, �3, 1�, �4, 0�, �5, 1�

�1, 1�, �2, 1�, �3, 0�, �4, �1�, �5, �4�
��2, 1�, ��1, 2�, �0, 6�, �1, 3�, �2, 0�, �3, �1�
�0, 4�, �1, 2�, �2, �1�, �3, 0�, �4, 1�, �5, 4�
��2, 1�, ��1, 0�, �0, 0�, �1, 1�, �3, 2�

(a) Find the least squares regression line for these data.

(b) Find the second-degree least squares regression polyno-
mial for these data.

(c) Sketch the graphs of the models found in parts (a) and (b).

(d) Use the models found in parts (a) and (b) to approximate
the maximum number of minutes a diver should stay at a
depth of 120 feet. ( The value given in the Navy’s tables is
15 minutes.)

12. The life expectancy for additional years of life for females in
the United States as of 1998 is shown in the table. (Source:
U.S. Census Bureau)

Current Age 10 20 30 40

Life Expectancy 70.6 60.8 51.0 41.4

Current Age 50 60 70 80

Life Expectancy 32.0 23.3 15.6 9.1

(a) Find the second-degree least squares regression polyno-
mial for these data.

(b) Use the result of part (a) to predict the life expectancy of
a newborn female and a female of age 100 years.

13. Total sales in billions of dollars of cellular phones in the
Unites States from 1992 to 1999 are shown in the table.
(Source: Electronic Market Data Book).

Year 1992 1993 1994 1995 1996 1997 1998 1999

Sales 1.15 1.26 1.28 2.57 2.66 2.75 2.78 2.81

(a) Find the second degree least squares regression polyno-
mial for the data.

(b) Use the result of part (a) to predict the total cellular phone
sales in 2005 and 2010.

(c) Are your predictions from part (b) realistic? Explain.

14. Total new domestic truck unit sales in hundreds of thousands
in the United States from 1993 to 2000 are shown in the
table. (Source: Ward’s Auto info bank)

Year 1993 1994 1995 1996 1997 1998 1999 2000

Trucks 5.29 6.00 6.06 6.48 6.63 7.51 7.92 8.09

(a) Find the second degree least squares regression polyno-
mial for the data.
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(b) Use the result of part (a) to predict the total new domestic
truck sales in 2005 and 2010.

(c) Are your predictions from part (b) realistic? Explain.

15. Find the least squares regression line for the population data
given in Example 1. Then use the model to predict the world
population in 2005 and 2010, and compare the results with
the predictions obtained in Example 1.

16. Show that the formula for the least squares regression line
presented in Section 2.5 is equivalent to the formula presented
in this section. That is, if

then the matrix equation is equivalent to

and

Applications of the Gauss-Seidel Method
17. Suppose that the experiment in Example 3 is performed with

the maze shown in Figure 10.4. Find the probability that the
mouse will emerge in the food corridor when it begins in the
ith intersection.
Figure 10.4

18. Suppose that the experiment in Example 3 is performed with
the maze shown in Figure 10.5. Find the probability that the
mouse will emerge in the food corridor when it begins in the
ith intersection.

Food

1 2 3
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yn

�,   X � �
1

1
...
1

x1

x2
...

xn

�,   A � �a0

a1
�,

Figure 10.5

19. A square metal plate has a constant temperature on each of its
four boundaries, as shown in Figure 10.6. Use a grid to
approximate the temperature distribution in the interior of the
plate. Assume that the temperature at each interior point is the
average of the temperatures at the four closest neighboring
points.
Figure 10.6

20. A rectangular metal plate has a constant temperature on each
of its four boundaries, as shown in Figure 10.7. Use a 
grid to approximate the temperature distribution in the interior
of the plate. Assume that the temperature at each interior point
is the average of the temperatures at the four closest neighbor-
ing points.
Figure 10.7
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Applications of the Power Method

In Exercises 21–24, the matrix represents the age transition matrix
for a population. Use the power method with scaling to find a stable
age distribution.

21. 22.

23. 24.

25. In Example 1 of Section 7.4, a laboratory population of rab-
bits is described. The age transition matrix for the population is

Find a stable age distribution for this population.

26. A population has the following characteristics.

(a) A total of 75% of the population survives its first year. Of
that 75%, 25% survives its second year. The maximum life
span is three years.

(b) The average number of offspring for each member of the
population is 2 the first year, 4 the second year, and 2 the
third year.

Find a stable age distribution for this population. (See
Exercise 9, Section 7.4.)

A � �
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4

2

0�A � �1
1
2

4
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27. Apply the power method to the matrix

discussed in Chapter 7 (Fibonacci sequence). Use the power
method to approximate the dominant eigenvalue of A. The
dominant eigenvalue is 

28. Writing In Example 2 of Section 2.5, the stochastic matrix

represents the transition probabilities for a consumer prefer-
ence model. Use the power method to approximate a domi-
nant eigenvector for this matrix. How does the approximation
relate to the steady-state matrix described in the discussion
following Example 3 in Section 2.5?

29. In Exercise 9 of Section 2.5, a population of 10,000 is 
divided into nonsmokers, moderate smokers, and heavy smok-
ers. Use the power method to approximate a dominant eigen-
vector for this matrix.
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